Discrete-Time Systems

o A discrete-time system processes agiven
Input sequence X[n] to generates an output
segquence y[n] with more desirable

properties

* In most applications, the discrete-time
system Is a single-input, single-output

system:

X[n ——

Discrete— time

System

— y[N]

| nput sequence

Output sequence
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Discrete-Time Systems:
Examples

o 2-Input, 1-output discrete-time systems -
Modulator, adder

e 1-input, 1-output discrete-time systems -
Multiplier, unit delay, unit advance

] —-—E x[n-=1] = x[n - E]E x[n-3]
G 3

Ye, K/y Ve

yin]

4
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Discrete-Time Systems: Examples
* Accumulator - yin] = ix[é]

= £+ = in-Z+{n

e The output y[n] at time Instant n Is the sum
of the input sample x[n] at time instant n
and the previous output y[n—1] at time
instant n—1, which isthe sum of all
previous input sample values from —o ton-1

* The system cumulatively adds, i.e., it
accumulates all input sample values
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Discrete-Time Systems:Examples

« Accumulator - Input-output relation can
also be written in the form

inl =S4+ 3]
— V—1]+ %x[é], n>0

e The second form is used for a causal input
sequence, inwhich case y[-1] iscaled
the initial condition
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Discrete-Time Systems:Examples
 M-point moving-average system -
yin =L 2x[n k]

e Used in smoothing random variations in
data

 An application: Consider
x[n] = <[n] +d[n],
where g n] isthe signal corrupted by anoise
dinj

)
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Discrete-Time Systems:Examples
gn]=2In(0.9)"], d[n] - random signal
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Discrete-Time Systems:Examples
 Linear interpolation - Employed to estimate

sampl e values between pairs of adjacent

sample values of a discrete-time sequence

e Factor-of-4 interpolation

x [n]

L ‘ I iiiiii ‘ I L
1 4
i T——O——r C———r 0 n
i 2 3 i 2 3 fi g 9 1o 11 12

3 4
X L/
\
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Discrete-Time Systems:

Examples
e Factor-of-2 interpolator -

yin] = x,[n]+3(x,[n—1+x,[n+1)
 Factor-of-3 interpolator -

yvin] = x,[n]+3 (xu[n 1+ x,[n+2])

+§(Xu[n— 2]+ x,[n+1])
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Discrete-Time Systems:

Classification
Linear System
Shift-Invariant System
Causal System

Stable System
Passive and L ossless Systems
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Linear Discrete-Time Systems

e Definition - If y,[n] isthe output due to an

Input x[n] and y,[n] |

s the output due to an

Input X,[n] then for an input
X n]=ax[n]+x[n]

the output Is given by
ylnl=ayln

+ B Y,[N]

* Above property must

nold for any arbitrary

constants ¢ and £, and for al possible

Inputsx,[n] and X,[N]
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Linear Discrete-Time Systems

« Accumulator - Y[ Nn] = K_Z X[4], Y.[n]= E_Z X, [ /]
e For an input 7 —

XN =ax[n]+x[n]
the output IS

yin] = (a x[0]+ B X%,[4])

= le[g] "‘,B sz[g] =a y)[nl+ B y,[n]

 Hence, the above system IS linear

11
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Linear Discrete-Time Systems

e The outputsy;[n]and Yy,[Nn] for inputs X[N]
and x,[n]are given by

il = i1+ 3 /]

yo[N

=0
= Yo[=1+ > Xo[/]

e The output y
IS given by

n] for an irfﬁgt a Xq[ N+ B X5[N]

il = YI-0+ 3 (@l 7]+ A X[ ])

12

(=0
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Linear Discrete-Time Systems

 Now «a Yy4[N]

=a(yl-1

+,3n)’2[n:

+ 2 X[/
/=0

)+ Byod=1+ 3 %)
/=0

(@ y1+ BYol-1) + (@ Y50+ B %l
/=0 /=0

* Thus y[n]=a yj[n]+ B y,[n] If
VI-U=awy[-1+ B y,[-]1]

13
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Linear Discrete-Time System

e For the causal accumulator to be linear the
condition y[-1]=a y[-1+ B yo[-1]
must hold for all initial conditions y[—1],
vi[-11, Yo[-1] , and all constants o and B

* Thiscondition cannot be satisfied unless the
accumulator isinitially at rest with zero
Initial condition

* For nonzero initial condition, the system is

nonlinear
14
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Nonlinear Discrete-Time
System

e Consider
yin] = x[n] - x{n—-1x{n+1

e Outputs yy[n] and Y2[N] for inputs %[N
and X,[n] are given by

yalnl = x¢[n] = q[n—1x[n+1]

Yo[n] = X5[N] - Xo[n—1 %[N +1]

15
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Nonlinear Discrete-Time
System
e Output y[n] dueto an input a X[Nn]+ £ X[ N]
ISgiven by
vin] ={a x[n]+ B x[n]}*
—{ax[n-1+ S X%[n-Y}{a X [n+1]+ B X[n+1]}
= a*{XC[N] - xy[n—1x[n+1}
+ BA{x5[N] = Xo[ N —1xo[n+1]}

+ o 2x[n]Xo[n] =X [N =1%o [N+ — X [N+ 1] x[n—1]}
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Nonlinear Discrete-Time
System
e On the other hand
a yi[n]+ B y,[n]
= a{X[n] - x[n-1x[n+1}
+ BN - xo[n—1]xp[n+1]}
# y[n]

e Hence, the system isnonlinear

17
Copyright © 2001, S. K. Mitra



Shift-Invariant System

e For asnift-invariant system, if y[n] i1sthe
response to an input X[ n], then the response
to an Iinput

X{n] = xg[n— ]
ISsimply
y[nl = yi[n—ng]
where n, IS any positive or negative integer
e The above relation must hold for any
s arbitrary input and its corresponding output
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Shift-Invariant System

 |nthe case of sequences and systems with
Indices n related to discrete instants of time,
the above property Is called time-invariance
property

e Time-invariance property ensuresthat for a
specified input, the output Is independent of
the time the input is being applied

19
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Shift-Invariant System

 Example - Consider the up-sampler with an
|nput-output relation given by

%[ :{x[n/L], n=0+L,+2L,.....
0, otherwise
e For aninput X{[n] = X[n—n,] the output X, ,[N]
IS given by
y [n]:{xl[n/L], n=0+L,+2L,.....
L 0, otherwise

20

_IX[(n-Lny)/L], n=0,+L,x2L,....
- 0, otherwise
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Shift-Invariant System

 However from the definition of the up-sampler

Xuln—ng]
_[X{(n=ny)/L], n=ng,ngtL,n,+2L,....
B 0, otherwise
* Xl’u[n]
* Hence, the up-sampler isatime-varying system

21
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Linear Time-Invariant System

 Linear Time-Invariant (LTI) System -
A system satisfying both the linearity and
the time-invariance property

o LTI systems are mathematically easy to
analyze and characterize, and consequently,

easy to design
* Highly useful signal processing algorithms
have been developed utilizing this class of

systems over the last several decades

22
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Causal System

e Inacausal system, the n,-th output sample
y[ N, ] depends only on input samples x[N]
for n<n, and does not depend on input
samplesfor n> n,

e Let y;[n] and y5[Nn] be the responses of a
causal discrete-time system to the inputs X[ N]
and X,[n], respectively

23
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Causal System

e Then

X[N] =X5[Nn] forn< N
Implies also that
yiln] = yo[n] forn< N

* For acausal system, changes in output
samples do not precede changes in the input

samples
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Causal System

e Examples of causal systems:
yin] =X n]+aoX[n—-1 + axxn—2] + a,x{n—3]
yln] =box{n]+ by x[n—-1] +bx[n—2]
+ay[n—-1+ayy[n—2]
yln] = y[n-1]+ Xn]
e Examples of noncausal systems:
y_n__xu_n:+ (xu n—-1]+ x,[n+1])

yln] = xy[n]+ (Xu n- 1]+ x,[n+2])
25 + = (xu[n 2]+ x,[n+1])
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Causal System

e A noncausal system can be implemented as
a causal system by delaying the output by
an appropriate number of samples

e For example a causal Implementation of the
factor-of-2 interpolator is given by

Yn] = x[n—1+ (x,[n—2]+ x,[n])

26
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Stable System

* There are various definitions of stability

« \We consider here the bounded-input,
bounded-output (BIBO) stability

e If y[n] Istheresponseto an input X[ n] and if
X[n] <By for all values of n

then
y[n]<B, foralvauesofn

27
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Stable System

 Example - The M-point moving average
filter isBIBO stable;

1 M-1
yirl =, X:n-K

» For abounded input X[n] < B, we have

1 M -1 1 M -1
yinl= - Y xn-K| < > xn-K]
k=0 k=0

< * (MB,) < B,

28
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Passive and Lossless Systems

o A discrete-time system is defined to be
passiveif, for every finite-energy input x[nj,
the output y[n] has, at most, the same energy,
.e.

Q0 o0 2
Syl < YXn]© <o
N=—0o0 N=—0o0
e For alossless system, the above inequality Is
satisfied with an equal sign for every input

29
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Passive and Lossless Systems

 Example - Consider the discrete-time
system defined by y[n] = a X]n— N] with N
a positive integer

* |tsoutput energy Isgiven by

> yinl? =la? 3xn]?

N=—0o0 N=—o0

* Hence, itisapassive systemif o/<1andis
alossesssystemif /=1

30
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Impulse and Step Responses

unit sample sequence{J[n]} isca
unit sampleresponse or smply, t
Impulse response, and is denoted

he response of a discrete-time system to a

ed the
ne

oy {h[n]}

e Theresponse of adiscrete-time system to a
unit step sequence { [ n]} Iscalled the unit
step response or ssmply, the step response,

and Is denoted by {9 n]}
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Impulse Response

 Example-
system

he Impul se response of the

yIn] = X n]+ aoX[n—=1] + azxX[n— 2]+ a4 Xx[n—3]

IS obtained by setting X[n] = d[n] resulting

N

h[n] = o[ N] + ax0[N—1] + azd[N—2] + 40| N— 3]
e The impulse response isthus afinite-length
sequence of length 4 given by

32

{h[n]}={0%1, Az, O3, Qa}
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Impulse Response

* Example - The impulse response of the
discrete-time accumul ator

vinl= 3 %71
{=—00

IS obtained by setting X[n] = d[n] resulting
N

Nl = .61 =
{=—00
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Impulse Response

 Example - The impulseresponse {h[n]} of
the factor-of-2 interpol ator
yin] = x,[n]+ (%[N =1+ x,[n+1])
* ISsobtained by setting x,[n]=4[n] and IS
given by .
h[n]:5[n]+2(5[n—1]+5[n+1])

e The impulse response isthus afinite-length
seguence of length 3:

{nn} ={0.5, ! 0.5}
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Time-Domain Characterization
of LTI Discrete-Time System

e |nput-Output Relationship -
A conseguence of the linear, time-
Invariance property isthat an LTI discrete-
time system is completely characterized by
ItS Impul se response

- mmm) Knowing the impulse response one
can compute the output of the system for
any arbitrary input
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Time-Domain Characterization
of LTI Discrete-Time System

 Let h[n] denote the Impulse response of a
LTI discrete-time system

* \We compute its output y[n] for the input:
X[n] =0.59[n+ 2] +1.50[n—1] — [ n— 2] + 0.755[ n — 5]

o Asthe system islinear, we can compute its
outputs for each member of the input

separately and add the individual outputsto

determine y[n]
36
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Time-Domain Characterization
of LTI Discrete-Time System

e Sincethe system Istime-invariant

o[n+ 2]
o[n-1

O
O

Input

n-2

n—95

output
— h[n+ 2]

— hn-1]
—>hn-2

—>hn-5
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Time-Domain Characterization
of LTI Discrete-Time System

o Likewise, asthe system islinear
Input output

0.50[n+ 2] — 0.5h[n+ 2]
1.58[n-1] > 1.5h[n-1]
—9[n—2] - —-h[n-2]
0.750[n—5] —» 0.75N[n—5]
* Hence because of the linearity property we

O Vin] = 0.5hN+ 2]+ 150N -1
—h[n-2]+0.75h[n—5]

Copyright © 2001, S. K. Mitra
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Time-Domain Characterization
of LTI Discrete-Time System

 Now, any arbitrary input sequence x[n] can
be expressed as a linear combination of
delayed and advanced unit sample
seguences in the form
X n] = kZX[k] o[ n—K]
* Theresponse of the LTI system to an input
X[ k]o[n—k] will be x[k]h[n—K]

39
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Time-Domain Characterization
of LTI Discrete-Time System

* Hence, the response y[n] to an input

xnl= > Xk]&[n—k]

K=—00

will be

yinl= SXklhn-K]

k=—00

which can be alternately written as
yin]= 2 x{n—K]h(K]

40 k:—OO
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Convolution Sum

e The summation

vinl= S XKIhn—Kl= > xn—K]hni

k=—00 k=—o0
IS called the convolution sum of the
sequences x| n] and h[n] and represented
compactly as

yin] =x[n]® h[n]

41
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Convolution Sum
* Properties-
o Commutative property:
x[n]® h[n] =h[n]® X[n]
o Associative property
(X[n]@h[n))@y[n] = x[n]@ (h[n]®Yy[n])
e Distributive property :

X[n]@(h[n] +y[n]) =X[n]®h[n] +x[n]@y[n]

42
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Convolution Sum

|nterpretation -

1) Time-reverse hfk] to form h[—Kk]

2) Shift h[—k]to the right by n sampling
periods if n > 0 or shift to the left by n
sampling periods if n < 0to formh[n-Kk]
3) Form the product V[k] = X[K]h[n—K]

4) Sum all samples of v[k] to develop the
n-th sample of y[n] of the convolution sum
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Convolution Sum
o Schematic Representation -

h[—k]—> Zn h[n_k] V[k] Z _>y[n]

K
X[K]

e The computation of an output sample using
the convolution sum is simply a sum of
products

* Involvesfairly ssimple operations such as
additions, multiplications, and delays
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Convolution Sum
o Welllustrate the convolution operation for
the following two seguences:
(1, 0<n<5
X[n] =+ |
0, otherwise
1.8—-0.3n, 0<n<5

0, otherwise
e Figureson the next several slides the steps
Involved in the computation of

© yin] =x[nl@h[n]

h[n] = -
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Convolution Sum

Plot of x[-4- k] and h[K] h[KIX[-4- K]
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n n
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Convolution Sum

Plot of x[-1- k] and h[K] h{K]X[-1- K]
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Q
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Convolution Sum

Plot of x[0- k] and h[K] h[K]X[O- K]
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Convolution Sum

Plot of x[1- k] and h[K] h[KIX[1- K]
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Convolution Sum

Plot of x[3- k] and h[k] h[K]x[3- K]
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Convolution Sum

Plot of X[5- k] and h[k] hik]x[5- k]
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Convolution Sum

Plot of x[7- K] and h[k] h[K]X[7- K]
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Convolution Sum

Plot of x[9- K] and h[k] h[K]x[9- K]
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Convolution Sum

Plot of x[10- k] and h{K] h[K]X[10- K]
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Convolution Sum

Plot of x[12- k] and h[K] h[Kk]x[12- k]
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Convolution Sum

Plot of x[13- k] and h[K] h[K]x[13- K]
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Time-Domain Characterization

of LTI Discrete-Time System

 |n practice, If either the input or the Impulse
response Is of finite length, the convolution
sum can be used to compute the output
sample as it involves afinite sum of
products

e |If both the input sequence and the impulse
response sequence are of finite length, the
output sequence is also of finite length
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Time-Domain Characterization

of LTI Discrete-Time System

o |f both the input sequence and the impulse
response sequence are of infinite length,
convolution sum cannot be used to compute

the output

* For systems characterized by an infinite
Impul se response sequence, an alternate
time-domain description involving afinite
sum of products will be considered
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Time-Domain Characterization
of LTI Discrete-Time System

 Example - Develop the sequence y[n]

generated by t
seguences X[ ]

ne convolution of the
and h[n] shown below

X(n|
3o

0 _ 3

h{n]

1 2 4

59
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Time-Domain Characterization
of LTI Discrete-Time System

* Ascan be seen from the snifted time-
reversed version{h[n—k]} for n <0, shown
below for n=-3, for any value of the
sample index Kk, the k-th sample of either
{x[k]} or {h[n—k]} Iszero
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Time-Domain Characterization
of LTI Discrete-Time System

o Asaresult, for n <0, the product of the k-th
samples of {x[k]} and{h[n—Kk]} isaways
zero, and hence

y[n]=0 for n<O

e Consider now the computation of y[O]

e The sequence h[—k]

{h[-K]} is shown 2
on the right SRS EI
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Time-Domain Characterization
of LTI Discrete-Time System

* The product sequence{x[k]h[—k]} Is plotted
below which has a single nonzero sample
X[O]h[O] for k=0

X KIN[—K]

-O—O— 000 D—D—D—D—k
5 4 3 2 -1 1 2 3

« Thus y[0] = X[O]h[O] = —2

62
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Time-Domain Characterization

of LTI Discrete-Time System

 For the computation of y[1], we shift{h[—K]}
to the right by one sample period to form

{h[1-k]} as shown below on the |eft
e The product sequence{X kK]h[1-Kk]} is

snown below on the right
21— K] XKIh1-k]

2 ——————
-5 4 3 2 -1 1 2 3
L, |7
T k

5—43l10123
-1

K

3 * Hence, y[1] = X[O]h[1] + x[1] h[O] = —4+ 0=-4
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Time-Domain Characterization
of LTI Discrete-Time System

 Tocaculatey[2], weform{h[2—k]} as
shown below on the | eft

 The product sequence{ X K]n[2—Kk]}is

plotted below on the right
ek XKIh(2 K
1 1
—o—o— o T T o—o—o—K o—o—o—o—oio—o—o—o—k

_4_3—zlolzs4s 3 2-1 0 1 2 3 4 5 6

o Y[21=X[0]n[2] + x{1]h[4] + X[2]h[0] = 0+ 0+1=1
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Time-Domain Characterization

of LTI Discrete-Time System

o Continuing the process we get
V[ 3] = X[ O]N[3] + X[1]n[ 2] + X[ 2]h[1] + X[ 3] N[ O]
=2+0+0+1=3
V4] = X[ [ 3] + X[ 2]h[ 2] + X[3]n[1] + X[ 4]h[O]
=0+0-2+3=1
V[5] = X[ 2]h[3] + X[3]h[ 2] + X[4]h[]]
=-1+0+6=5
V[6] = X[3]N[3] + X[4]h[2] =1+ 0=1
65 V[ 7] =X4]h[3] =-3
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Time-Domain Characterization

of LTI Discrete-Time System

e From the plot of {h[n—Kk]} for n> 7 and the
plot of {X[K]} as shown below, it can be
seen that there is no overlap between these

two sequences
e Asaresult y[n]=0 for n>7

X[K] h[8— K]

3
2
1 1
0 3 k o k
-—— 00— u o———0— K 00 . O
1121'4 234167891011
2
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Time-Domain Characterization
of LTI Discrete-Time System

* The sequence{y[n]} generated by the
convolution sum Is shown below

67 43
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Time-Domain Characterization

of LTI Discrete-Time System

 Note: The sum of indices of each sample
product inside the convolution sum is equal
to the index of the sample being generated
by the convolution operation

* For example, the computation of y[3] in the
previous example involves the products
X[O]N[3], X[1]N[2], X[2]n[1], and X[ 3]h[O]

e The sum of indicesin each of these
productsisegual to 3
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Time-Domain Characterization

of LTI Discrete-Time System

* Inthe example considered the convolution
of asequence {x[n]} of length 5 with a
sequence { h[n]} of length 4 resulted in a
sequence {y[n]} of length 8

* Ingenerd, If the lengths of the two
sequences being convolved are M and N,
then the sequence generated by the
convolutionisof length M + N -1

69
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Convolution Using MATLAB

 The M-fileconv implements the convolution
sum of two finite-length seqguences

o |f a=[-2 0 1 -1 73
b=[1 2 0 -1]]
thenconv( a, b) yields

[-2 -4 1 3151 -3
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Simple Interconnection
Schemes

e Two simple interconnection schemes are:
« Cascade Connection
o Parallel Connection
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Cascade Connection

— hy[n] — hy[n]

= — hy[n] [ hyn] —

—>

hy[n] ® hy[n]

—>

 Impulse response h[n] of the cascade of two
LTI discrete-time systems with impulse
responseshy|n] and hy[Nn] is given by

(] = hynl@hylr]

12
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Cascade Connection

* Note: The ordering of the systems in the
cascade has no effect on the overall impulse
response because of the commutative
property of convolution

A cascade connection of two stable systems
IS stable

* A cascade connection of two passive
(lossless) systems is passive (lossless)
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Cascade Connection

 An application isin the development of an
Inver se system

e |f the cascade connection satisfies the
relation
h[n]®hy[n] =J[n]

then the LTI systemhy|n] issaid to be the
inverse of hy[n] and vice-versa

74
Copyright © 2001, S. K. Mitra



75

Cascade Connection

e An application of the inverse system
concept isin the recovery of asignal x[n]
from itsdistorted version X[n] appearing at

the output

of atransmission channel

o If the impulse response of the channel is
known, then x|n] can be recovered by

designing an inverse system of the channel

channel L Inverse system

X[n] —»

ngrl - g s ]

hy[n]®hy[n] = &[]
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Cascade Connection

 Example - Consider the discrete-time
accumulator with an impulse response p[n]

 |tsinverse system satisfy the condition
u[n]®hyn] = 3[n]
* |t follows from the above that h,[n] = 0 for

n<0 and
hy[0] =1

N
> ho[¢]=0 for n>1
76 (=0
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Cascade Connection

Thus the Impul se response of the inverse
system of the discrete-time accumulator is

given by
ho[n] =3[n] —o[n-1

which iscalled abackward c
system

Iffer ence

Copyright © 2001, S. K. Mitra



/8

Parallel Connection

]
e =g+ g
— hp[n]

 Impulse response h[n] of the parallel
connection of two LTI discrete-time
systems with impul se responses hy| n] and
ho[n] isgiven by
h[n] = hyn]+ hy[N]

Copyright © 2001, S. K. Mitra



79

Simple Interconnection Schemes

* Consider the discrete-time system where

y[n]

il

3N

h[n] =—-2(0.5)"u[n] [ Tolr]

— 8[n] +0.58[n—1],

=0.59[n] —0.255|n—1],
= 20| n], —t W] —@—

+— hgln] ﬁ
ha[N]
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Simple Interconnection Schemes

o Simplifying the block-diagram we obtain

ho[N] = T » hy[n] 4’3‘9—'
LhB[n] +hy[n]H 1 hy[n]@ (hg[n]+hy[n])
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Simple Interconnection Schemes

e Overall iImpulse response N[n] isgiven by

h[n] =hy[n

=hy|

e Now,

n

+ h2[n

+ho[n]

® (hg[n]+hy[n])
® hg[n]+ [N ®hy[N]

ho[N@hsn] = (18[n] - L8[n—1)®28[
=[] - 18{n-1

81

Copyright © 2001, S. K. Mitra



Simple Interconnection Schemes

o] @hyn] = (28[n] - 18[n - 1)@~ 2(H)"uln))
= —()"ufn]+ 1 ()" uln 1]
= —()"wn] + (H)"u[n-1]

=—(})"8[n] =—3[n]

herefore
h[n] = §[n] +%6[n—1] +8[n] —%S[n—l] —3[n] = §[n]
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