Discrete-Time Systems

- A discrete-time system processes a given input sequence x[n] to generates an output sequence y[n] with more desirable properties
- In most applications, the discrete-time system is a single-input, single-output system:

$$x[n]$$
 Discrete – time $y[n]$

Input sequence Output sequence

- 2-input, 1-output discrete-time systems Modulator, adder
- 1-input, 1-output discrete-time systems Multiplier, unit delay, unit advance

• Accumulator -
$$y[n] = \sum_{\ell=-\infty}^{n} x[\ell]$$

= $\sum_{\ell=-\infty}^{n-1} x[\ell] + x[n] = y[n-1] + x[n]$

- The output y[n] at time instant n is the sum of the input sample x[n] at time instant n and the previous output y[n-1] at time instant n-1, which is the sum of all previous input sample values from $-\infty$ to n-1
- The system cumulatively adds, i.e., it accumulates all input sample values

 Accumulator - Input-output relation can also be written in the form

$$y[n] = \sum_{\ell=-\infty}^{-1} x[\ell] + \sum_{\ell=0}^{n} x[\ell]$$

= $y[-1] + \sum_{\ell=0}^{n} x[\ell], n \ge 0$

• The second form is used for a causal input sequence, in which case y[-1] is called the initial condition

M-point moving-average system -

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

- Used in smoothing random variations in data
- An application: Consider

$$x[n] = s[n] + d[n],$$

where s[n] is the signal corrupted by a noise d[n]

 $s[n] = 2[n(0.9)^n], d[n] - random signal$

- Linear interpolation Employed to estimate sample values between pairs of adjacent sample values of a discrete-time sequence
- Factor-of-4 interpolation

Factor-of-2 interpolator -

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$

Factor-of-3 interpolator -

$$y[n] = x_u[n] + \frac{1}{3}(x_u[n-1] + x_u[n+2])$$
$$+ \frac{2}{3}(x_u[n-2] + x_u[n+1])$$

Discrete-Time Systems: Classification

- Linear System
- Shift-Invariant System
- Causal System
- Stable System
- Passive and Lossless Systems

• **Definition** - If $y_1[n]$ is the output due to an input $x_1[n]$ and $y_2[n]$ is the output due to an input $x_2[n]$ then for an input

$$x[n] = \alpha x_1[n] + \beta x_2[n]$$

the output is given by

$$y[n] = \alpha y_1[n] + \beta y_2[n]$$

• Above property must hold for any arbitrary constants α and β , and for all possible inputs $x_1[n]$ and $x_2[n]$

- Accumulator $y_1[n] = \sum_{\ell=-\infty}^{n} x_1[\ell], \quad y_2[n] = \sum_{\ell=-\infty}^{n} x_2[\ell]$
- For an input

$$x[n] = \alpha x_1[n] + \beta x_2[n]$$

the output is

$$y[n] = \sum_{\ell=-\infty}^{n} (\alpha x_1[\ell] + \beta x_2[\ell])$$

$$= \alpha \sum_{\ell=-\infty}^{n} x_{1}[\ell] + \beta \sum_{\ell=-\infty}^{n} x_{2}[\ell] = \alpha y_{1}[n] + \beta y_{2}[n]$$

Hence, the above system is linear

• The outputs $y_1[n]$ and $y_2[n]$ for inputs $x_1[n]$ and $x_2[n]$ are given by

$$y_1[n] = y_1[-1] + \sum_{\ell=0}^{n} x_1[\ell]$$

$$y_2[n] = y_2[-1] + \sum_{\ell=0}^{n} x_2[\ell]$$

• The output y[n] for an input $\alpha x_1[n] + \beta x_2[n]$ is given by

$$y[n] = y[-1] + \sum_{\ell=0}^{n} (\alpha x_1[\ell] + \beta x_2[\ell])$$

• Now
$$\alpha y_1[n] + \beta y_2[n]$$

$$= \alpha (y_1[-1] + \sum_{\ell=0}^{n} x_1[\ell]) + \beta (y_2[-1] + \sum_{\ell=0}^{n} x_2[\ell])$$

$$= (\alpha y_1[-1] + \beta y_2[-1]) + (\alpha \sum_{\ell=0}^{n} x_1[\ell] + \beta \sum_{\ell=0}^{n} x_2[\ell])$$

• Thus
$$y[n] = \alpha y_1[n] + \beta y_2[n]$$
 if
$$y[-1] = \alpha y_1[-1] + \beta y_2[-1]$$

- For the causal accumulator to be linear the condition $y[-1] = \alpha y_1[-1] + \beta y_2[-1]$ must hold for all initial conditions y[-1], $y_1[-1]$, $y_2[-1]$, and all constants α and β
- This condition cannot be satisfied unless the accumulator is initially at rest with zero initial condition
- For nonzero initial condition, the system is nonlinear

Nonlinear Discrete-Time System

Consider

$$y[n] = x^{2}[n] - x[n-1]x[n+1]$$

• Outputs $y_1[n]$ and $y_2[n]$ for inputs $x_1[n]$ and $x_2[n]$ are given by

$$y_1[n] = x_1^2[n] - x_1[n-1]x_1[n+1]$$

$$y_2[n] = x_2^2[n] - x_2[n-1]x_2[n+1]$$

Nonlinear Discrete-Time System

• Output y[n] due to an input $\alpha x_1[n] + \beta x_2[n]$ is given by

$$y[n] = \{\alpha x_1[n] + \beta x_2[n]\}^2$$

$$-\{\alpha x_1[n-1] + \beta x_2[n-1]\} \{\alpha x_1[n+1] + \beta x_2[n+1]\}$$

$$= \alpha^2 \{x_1^2[n] - x_1[n-1]x_1[n+1]\}$$

$$+ \beta^2 \{x_2^2[n] - x_2[n-1]x_2[n+1]\}$$

$$+\alpha\beta\{2x_1[n]x_2[n]-x_1[n-1]x_2[n+1]-x_1[n+1]x_2[n-1]\}$$

Nonlinear Discrete-Time System

On the other hand

$$\alpha y_{1}[n] + \beta y_{2}[n]$$

$$= \alpha \{x_{1}^{2}[n] - x_{1}[n-1]x_{1}[n+1]\}$$

$$+ \beta \{x_{2}^{2}[n] - x_{2}[n-1]x_{2}[n+1]\}$$

$$\neq y[n]$$

• Hence, the system is **nonlinear**

• For a shift-invariant system, if $y_1[n]$ is the response to an input $x_1[n]$, then the response to an input

$$x[n] = x_1[n - n_o]$$

is simply

$$y[n] = y_1[n - n_o]$$

where n_o is any positive or negative integer

 The above relation must hold for any arbitrary input and its corresponding output

- In the case of sequences and systems with indices *n* related to discrete instants of time, the above property is called **time-invariance** property
- Time-invariance property ensures that for a specified input, the output is independent of the time the input is being applied

• Example - Consider the up-sampler with an input-output relation given by

$$x_u[n] = \begin{cases} x[n/L], & n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$

• For an input $x_1[n] = x[n - n_o]$ the output $x_{1,u}[n]$ is given by

$$x_{1,u}[n] = \begin{cases} x_1[n/L], & n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} x[(n-Ln_o)/L], & n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$

$$0, & \text{otherwise}$$

$$0, & \text{otherwise}$$

$$0, & \text{copyright © 2001, S. K. Mitra}$$

However from the definition of the up-sampler

$$x_{u}[n-n_{o}]$$

$$=\begin{cases} x[(n-n_{o})/L], & n=n_{o}, n_{o} \pm L, n_{o} \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$

$$\neq x_{1,u}[n]$$

• Hence, the up-sampler is a time-varying system

Linear Time-Invariant System

- Linear Time-Invariant (LTI) System A system satisfying both the linearity and the time-invariance property
- LTI systems are mathematically easy to analyze and characterize, and consequently, easy to design
- Highly useful signal processing algorithms have been developed utilizing this class of systems over the last several decades

- In a causal system, the n_o -th output sample $y[n_o]$ depends only on input samples x[n] for $n \le n_o$ and does not depend on input samples for $n > n_o$
- Let $y_1[n]$ and $y_2[n]$ be the responses of a causal discrete-time system to the inputs $x_1[n]$ and $x_2[n]$, respectively

Then

$$x_1[n] = x_2[n]$$
 for $n < N$

implies also that

$$y_1[n] = y_2[n]$$
 for $n < N$

• For a causal system, changes in output samples do not precede changes in the input samples

• Examples of causal systems:

$$y[n] = \alpha_1 x[n] + \alpha_2 x[n-1] + \alpha_3 x[n-2] + \alpha_4 x[n-3]$$

$$y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + a_1 y[n-1] + a_2 y[n-2]$$

$$y[n] = y[n-1] + x[n]$$

• Examples of noncausal systems:

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$

$$y[n] = x_u[n] + \frac{1}{3}(x_u[n-1] + x_u[n+2]) + \frac{2}{3}(x_u[n-2] + x_u[n+1])$$
Copyright © 2001, S. K. Mitra

- A noncausal system can be implemented as a causal system by delaying the output by an appropriate number of samples
- For example a causal implementation of the factor-of-2 interpolator is given by

$$y[n] = x_u[n-1] + \frac{1}{2}(x_u[n-2] + x_u[n])$$

Stable System

- There are various definitions of stability
- We consider here the bounded-input,
 bounded-output (BIBO) stability
- If y[n] is the response to an input x[n] and if $|x[n]| \le B_x$ for all values of n

then

 $|y[n]| \le B_y$ for all values of n

Stable System

• Example - The *M*-point moving average filter is BIBO stable:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

• For a bounded input $|x[n]| \le B_x$ we have

$$|y[n]| = \left| \frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \right| \le \frac{1}{M} \sum_{k=0}^{M-1} |x[n-k]|$$

$$\le \frac{1}{M} (MB_x) \le B_x$$

Passive and Lossless Systems

A discrete-time system is defined to be
 passive if, for every finite-energy input x[n],
 the output y[n] has, at most, the same energy,
 i.e.

$$\sum_{n=-\infty}^{\infty} |y[n]|^2 \le \sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

• For a lossless system, the above inequality is satisfied with an equal sign for every input

Passive and Lossless Systems

- Example Consider the discrete-time system defined by $y[n] = \alpha x[n-N]$ with N a positive integer
- Its output energy is given by

$$\sum_{n=-\infty}^{\infty} |y[n]|^2 = |\alpha|^2 \sum_{n=-\infty}^{\infty} |x[n]|^2$$

• Hence, it is a passive system if $|\alpha| \le 1$ and is a lossless system if $|\alpha| = 1$

Impulse and Step Responses

- The response of a discrete-time system to a unit sample sequence $\{\delta[n]\}$ is called the unit sample response or simply, the impulse response, and is denoted by $\{h[n]\}$
- The response of a discrete-time system to a unit step sequence $\{\mu[n]\}$ is called the unit step response or simply, the step response, and is denoted by $\{s[n]\}$

Impulse Response

• Example - The impulse response of the system

$$y[n] = \alpha_1 x[n] + \alpha_2 x[n-1] + \alpha_3 x[n-2] + \alpha_4 x[n-3]$$
is obtained by setting $x[n] = \delta[n]$ resulting
in

$$h[n] = \alpha_1 \delta[n] + \alpha_2 \delta[n-1] + \alpha_3 \delta[n-2] + \alpha_4 \delta[n-3]$$

• The impulse response is thus a finite-length sequence of length 4 given by

$$\{h[n]\} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$$

Impulse Response

• Example - The impulse response of the discrete-time accumulator

$$y[n] = \sum_{\ell = -\infty}^{n} x[\ell]$$

is obtained by setting $x[n] = \delta[n]$ resulting in

$$h[n] = \sum_{\ell=-\infty}^{n} \delta[\ell] = \mu[n]$$

Impulse Response

• Example - The impulse response {h[n]} of the factor-of-2 interpolator

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$

• is obtained by setting $x_u[n] = \delta[n]$ and is given by

$$h[n] = \delta[n] + \frac{1}{2}(\delta[n-1] + \delta[n+1])$$

• The impulse response is thus a finite-length sequence of length 3:

$$\{h[n]\} = \{0.5, 1 0.5\}$$

Time-Domain Characterization of LTI Discrete-Time System

- Input-Output Relationship -
 - A consequence of the linear, timeinvariance property is that an LTI discretetime system is completely characterized by its impulse response
- Knowing the impulse response one can compute the output of the system for any arbitrary input

Time-Domain Characterization of LTI Discrete-Time System

- Let *h*[*n*] denote the impulse response of a LTI discrete-time system
- We compute its output y[n] for the input: $x[n] = 0.5\delta[n+2] + 1.5\delta[n-1] - \delta[n-2] + 0.75\delta[n-5]$
 - As the system is linear, we can compute its outputs for each member of the input separately and add the individual outputs to determine *y*[*n*]

• Since the system is time-invariant

input output
$$\delta[n+2] \to h[n+2]$$

$$\delta[n-1] \to h[n-1]$$

$$\delta[n-2] \to h[n-2]$$

$$\delta[n-5] \to h[n-5]$$

• Likewise, as the system is linear input output

$$0.5\delta[n+2] \to 0.5h[n+2]$$

$$1.5\delta[n-1] \to 1.5h[n-1]$$

$$-\delta[n-2] \to -h[n-2]$$

$$0.75\delta[n-5] \to 0.75h[n-5]$$

Hence because of the linearity property we get

$$y[n] = 0.5h[n+2] + 1.5h[n-1]$$
$$-h[n-2] + 0.75h[n-5]$$

 Now, any arbitrary input sequence x[n] can be expressed as a linear combination of delayed and advanced unit sample sequences in the form

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

• The response of the LTI system to an input $x[k]\delta[n-k]$ will be x[k]h[n-k]

• Hence, the response y[n] to an input

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

will be

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

which can be alternately written as

$$y[n] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

• The summation

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[n]$$

is called the **convolution sum** of the sequences x[n] and h[n] and represented compactly as

$$y[n] = x[n] \circledast h[n]$$

- Properties -
- Commutative property:

$$x[n] \circledast h[n] = h[n] \circledast x[n]$$

Associative property :

$$(x[n] \circledast h[n]) \circledast y[n] = x[n] \circledast (h[n] \circledast y[n])$$

• Distributive property:

$$x[n] \circledast (h[n] + y[n]) = x[n] \circledast h[n] + x[n] \circledast y[n]$$

- Interpretation -
- 1) Time-reverse h[k] to form h[-k]
- 2) Shift h[-k] to the right by n sampling periods if n > 0 or shift to the left by n sampling periods if n < 0 to form h[n-k]
- 3) Form the product v[k] = x[k]h[n-k]
- 4) Sum all samples of v[k] to develop the
 n-th sample of y[n] of the convolution sum

• Schematic Representation -

- The computation of an output sample using the convolution sum is simply a sum of products
- Involves fairly simple operations such as additions, multiplications, and delays

• We illustrate the convolution operation for the following two sequences:

$$x[n] = \begin{cases} 1, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$
$$h[n] = \begin{cases} 1.8 - 0.3n, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$

• Figures on the next several slides the steps involved in the computation of

$$y[n] = x[n] \circledast h[n]$$

- In practice, if either the input or the impulse response is of finite length, the convolution sum can be used to compute the output sample as it involves a finite sum of products
- If both the input sequence and the impulse response sequence are of finite length, the output sequence is also of finite length

- If both the input sequence and the impulse response sequence are of infinite length, convolution sum cannot be used to compute the output
- For systems characterized by an infinite impulse response sequence, an alternate time-domain description involving a finite sum of products will be considered

• Example - Develop the sequence y[n] generated by the convolution of the sequences x[n] and h[n] shown below

As can be seen from the shifted time-reversed version {h[n-k]} for n < 0, shown below for n = -3, for any value of the sample index k, the k-th sample of either {x[k]} or {h[n-k]} is zero

• As a result, for n < 0, the product of the k-th samples of $\{x[k]\}$ and $\{h[n-k]\}$ is always zero, and hence

$$y[n] = 0$$
 for $n < 0$

- Consider now the computation of y[0]
- The sequence
 {h[-k]} is shown
 on the right

• The product sequence $\{x[k]h[-k]\}$ is plotted below which has a single nonzero sample x[0]h[0] for k=0

• Thus y[0] = x[0]h[0] = -2

- For the computation of y[1], we shift $\{h[-k]\}$ to the right by one sample period to form $\{h[1-k]\}$ as shown below on the left
- The product sequence $\{x[k]h[1-k]\}$ is shown below on the right

• Hence, y[1] = x[0]h[1] + x[1]h[0] = -4 + 0 = -4

- To calculate y[2], we form $\{h[2-k]\}$ as shown below on the left
- The product sequence $\{x[k]h[2-k]\}$ is plotted below on the right

$$y[2] = x[0]h[2] + x[1]h[1] + x[2]h[0] = 0 + 0 + 1 = 1$$

• Continuing the process we get y[3] = x[0]h[3] + x[1]h[2] + x[2]h[1] + x[3]h[0]= 2 + 0 + 0 + 1 = 3y[4] = x[1]h[3] + x[2]h[2] + x[3]h[1] + x[4]h[0]= 0 + 0 - 2 + 3 = 1y[5] = x[2]h[3] + x[3]h[2] + x[4]h[1]=-1+0+6=5y[6] = x[3]h[3] + x[4]h[2] = 1 + 0 = 1y[7] = x[4]h[3] = -3

- From the plot of $\{h[n-k]\}\$ for n > 7 and the plot of $\{x[k]\}$ as shown below, it can be seen that there is no overlap between these two sequences
- As a result y[n] = 0 for n > 7

• The sequence $\{y[n]\}$ generated by the convolution sum is shown below

- Note: The sum of indices of each sample product inside the convolution sum is equal to the index of the sample being generated by the convolution operation
- For example, the computation of y[3] in the previous example involves the products x[0]h[3], x[1]h[2], x[2]h[1], and x[3]h[0]
- The sum of indices in each of these products is equal to 3

- In the example considered the convolution of a sequence {x[n]} of length 5 with a sequence {h[n]} of length 4 resulted in a sequence {y[n]} of length 8
- In general, if the lengths of the two sequences being convolved are M and N, then the sequence generated by the convolution is of length M + N 1

Convolution Using MATLAB

- The M-file conv implements the convolution sum of two finite-length sequences
- If $a = [-2 \ 0 \ 1 \ -1 \ 3]$ $b = [1 \ 2 \ 0 \ -1]$ then conv(a,b) yields

$$[-2 \ -4 \ 1 \ 3 \ 1 \ 5 \ 1 \ -3]$$

- Two simple interconnection schemes are:
- Cascade Connection
- Parallel Connection

• Impulse response h[n] of the cascade of two LTI discrete-time systems with impulse responses $h_1[n]$ and $h_2[n]$ is given by

$$h[n] = h_1[n] \circledast h_2[n]$$

- Note: The ordering of the systems in the cascade has no effect on the overall impulse response because of the commutative property of convolution
- A cascade connection of two stable systems is stable
- A cascade connection of two passive (lossless) systems is passive (lossless)

- An application is in the development of an inverse system
- If the cascade connection satisfies the relation

$$h_1[n] \circledast h_2[n] = \delta[n]$$

then the LTI system $h_1[n]$ is said to be the inverse of $h_2[n]$ and vice-versa

- An application of the inverse system concept is in the recovery of a signal x[n] from its distorted version $\hat{x}[n]$ appearing at the output of a transmission channel
- If the impulse response of the channel is known, then x[n] can be recovered by designing an inverse system of the channel

channel inverse system
$$x[n] \longrightarrow h_1[n] \xrightarrow{\hat{x}[n]} h_2[n] \longrightarrow x[n]$$

$$h_1[n] \circledast h_2[n] = \delta[n]$$

- Example Consider the discrete-time accumulator with an impulse response $\mu[n]$
- Its inverse system satisfy the condition

$$\mu[n] \circledast h_2[n] = \delta[n]$$

• It follows from the above that $h_2[n] = 0$ for n < 0 and

$$h_2[0] = 1$$

$$\sum_{\ell=0}^{n} h_2[\ell] = 0 \text{ for } n \ge 1$$

• Thus the impulse response of the inverse system of the discrete-time accumulator is given by

$$h_2[n] = \delta[n] - \delta[n-1]$$

which is called a backward difference system

Parallel Connection

• Impulse response h[n] of the parallel connection of two LTI discrete-time systems with impulse responses $h_1[n]$ and $h_2[n]$ is given by

$$h[n] = h_1[n] + h_2[n]$$

Consider the discrete-time system where

$$h_1[n] = \delta[n] + 0.5\delta[n-1],$$

 $h_2[n] = 0.5\delta[n] - 0.25\delta[n-1],$
 $h_3[n] = 2\delta[n],$
 $h_4[n] = -2(0.5)^n \mu[n]$
 $h_2[n]$
 $h_3[n] = \frac{h_1[n]}{h_2[n]}$

Simplifying the block-diagram we obtain

• Overall impulse response h[n] is given by

$$h[n] = h_1[n] + h_2[n] \circledast (h_3[n] + h_4[n])$$

= $h_1[n] + h_2[n] \circledast h_3[n] + h_2[n] \circledast h_4[n]$

• Now,

$$h_2[n] \circledast h_3[n] = (\frac{1}{2}\delta[n] - \frac{1}{4}\delta[n-1]) \circledast 2\delta[n]$$
$$= \delta[n] - \frac{1}{2}\delta[n-1]$$

$$h_{2}[n] \circledast h_{4}[n] = \left(\frac{1}{2}\delta[n] - \frac{1}{4}\delta[n-1]\right) \circledast \left(-2\left(\frac{1}{2}\right)^{n}\mu[n]\right)$$

$$= -\left(\frac{1}{2}\right)^{n}\mu[n] + \frac{1}{2}\left(\frac{1}{2}\right)^{n-1}\mu[n-1]$$

$$= -\left(\frac{1}{2}\right)^{n}\mu[n] + \left(\frac{1}{2}\right)^{n}\mu[n-1]$$

$$= -\left(\frac{1}{2}\right)^{n}\delta[n] = -\delta[n]$$

Therefore

$$h[n] = \delta[n] + \frac{1}{2}\delta[n-1] + \delta[n] - \frac{1}{2}\delta[n-1] - \delta[n] = \delta[n]$$