14. Stochastic Processes

Introduction

Let & denote the random outcome of an experiment. To every such

outcome suppose a waveform
X(1,8) is assigned.

A

or discrete (countably =
infinite or finite) as well.

For fixed &, € § (the set of
all experimental outcomes), X (z,§) 1s a specific time function.

For fixed t,
X, = X(tlﬁgi)

X (1,8)
The collection of such xeer L N TN
waveforms form a e y b L
stochastic process. The ' S~
set of {¢ } and the time X(1.8,) \/%
index ¢ can be continuous o~ —
X(1,8)) Iy

(e
~

Fig. 14.1

1s a random variable. The ensemble of all such realizations |
X (t,€) over time represents the stochastic PILLAI/Cha



process X(7). (see Fig 14.1). For example
X(t)=acos(®,t+¢),

where ¢ 1s a uniformly distributed random variable in (0,2r),
represents a stochastic process. Stochastic processes are everywhere:
Brownian motion, stock market fluctuations, various queuing systems
all represent stochastic phenomena.

If X(7) is a stochastic process, then for fixed ¢, X(¢) represents
a random variable. Its distribution function is given by

F (x,)= P{X(f) < x) (14-1)

Notice that F_(x,¢) depends on ¢, since for a different ¢, we obtain
a different random variable. Further
ety & ECD
dx
represents the first-order probability density function of the

process X(?). 2
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For t=t, and t = ¢,, X(¥) represents two different random variables
X1 =X(t)) and X, = X(#,) respectively. Their joint distribution 1s
given by

Fo(x,x,,1,8,) = P{X(1) < x, X(8,) S X, } (14-3)

and

a217)((')Cla')629l‘19l‘2) (14_4)

fo(x,,x ,t,t)é
X 1 2971572 ax18x2

represents the second-order density function of the process X(?).
Similarly f, (X, %, X, £,4,--,1,) represents the n' order density
function of the process X(¢). Complete specification of the stochastic
process X(¢) requires the knowledge of [, (x;,Xx,, =X, £,,t,+,t)
forall #,, i=1,2,---,n and for all n. (an almost impossible task

in reality).
3
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Mean of a Stochastic Process:

WO 2EX (0} =[x f, (x,0)dx (14-5)

represents the mean value of a process X(¢). In general, the mean of
a process can depend on the time index ¢.

Autocorrelation function of a process X(7) 1s defined as
Rxx (t1 ” tz) A: E{X(tl )X* (tz )} — jjxlx; fX ('xl b xz b tl b ZL2 )dxldx2 (14'6)

and 1t represents the interrelationship between the random variables
X1 =X(t)) and X, = X(#,) generated from the process X(?).

Properties:

L R, (4,1,)= R;(tzatl) =[E{X (1, )X*(t1)}]* (14-7)

2.R_(t,t)=E{|X(®)|’}>0. (Average instantaneous power)
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3. R_(¢,t,) represents a nonnegative definite function, 1.e., for any
set of constants{a,};_,

> > aaR,(t.,t)=0. (14-8)
i=l j=I n
Eq. (14-8) follows by noticing that E{|Y |’} >0 for ¥ =) a,X(¢,).
The function i=l
C,.(t,5,) =R, (1) =, (t)u,(t,) (14-9)

represents the autocovariance function of the process X(?).
Example 14.1
Let

z=[" X(1d.

Then
EllzP1=[" [ E{X(t)X (t,)}dndt,

I ¢T
= R, (t,t,)dt dt 14-10 :
j—TJ R (t5)dndt, ( ) PILLAI/Cha



Example 14.2
X(t)=acos(o,t+¢), ¢ ~U(0,2r). (14-11)
This gives

1, (1) = E{X(1)} = aE{cos(@,t +9)}
=acosw,t E{cosp}—asinw,E{snp}=0, (14-12)

since E{cosq} = ﬁjozn cosp dp =0=E{sin@}.
Similarly

R _(t,t,)=a’E{cos(w,t, +¢)cos(®,t, +®)}

2
a

= 7E{(:OSODO(t1 — 1) +cos(®,(f +1,) +2¢)]

2
a

:Ec:oscoo(t1 —1,). (14-13)

6
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Stationary Stochastic Processes

Stationary processes exhibit statistical properties that are
invariant to shift in the time index. Thus, for example, second-order
stationarity implies that the statistical properties of the pairs
{X(t) , X(;) } and {X(#;+c) , X(t,+c)} are the same for any c.
Similarly first-order stationarity implies that the statistical properties
of X(¢#;) and X(z;+c) are the same for any c.

In strict terms, the statistical properties are governed by the

joint probability density function. Hence a process is nt'-order
Strict-Sense Stationary (S.S.S) if

fx(xlnxza'”xnv L, 1, "'9tn) = fx(xlnxza'”xnv L+et, +c1, + C)

(14-14)

for any c, where the left side represents the joint density function of
the random variables X, = X(¢,), X, = X(¢,), ---, X, =X (¢,) and
the right side corresponds to the joint density function of the random
variables X| =X (¢, +¢), X, =X(t, +¢), ---, X, =X(t, +¢).
A process X(¢) 1s said to be strict-sense stationary if (14-14) is i
true forall ¢, i=1,2,---,n, n=1,2,--- and any c. PILLAI/Cha



For a first-order strict sense stationary process,
from (14-14) we have

f.(x,t)=f (x,t+c) (14-15)
for any c. In particular ¢ = — ¢ gives
fo(x,t)= [, (x) (14-16)

1.e., the first-order density of X(¢) is independent of ¢. In that case
ELX(0]=] " xf(x)dx=mn, a constant (14-17)

Similarly, for a second-order strict-sense stationary process
we have from (14-14)

o, x,, 4,5) = fL(x,X,, 8 +c,t, +¢)
for any c. For c = — £, we get

fx(‘x19x29 t19t2)EfX(x19x29 tl_tz) (14-18)
8

PILLAI/Cha



1.e., the second order density function of a strict sense stationary
process depends only on the difference of the time indices ¢, —¢, =~.
In that case the autocorrelation function is given by

R, (1,t,) = E{X(1)X (1,)}
= jjxlx; S (X, x,,T =1 — ¢, )dx,dx,
:R)ﬁX(tl_tZ)A:RXX(T):R;X(_T)9 (14-19)

1.e., the autocorrelation function of a second order strict-sense
stationary process depends only on the difference of the time

indices t =1, —¢,.

Notice that (14-17) and (14-19) are consequences of the stochastic
process being first and second-order strict sense stationary.

On the other hand, the basic conditions for the first and second order
stationarity — Egs. (14-16) and (14-18) — are usually difficult to verify.
In that case, we often resort to a looser definition of stationarity,

known as Wide-Sense Stationarity (W.S.S), by making use of ,
PILLAI/Cha



(14-17) and (14-19) as the necessary conditions. Thus, a process X(?)
1s said to be Wide-Sense Stationary 1f

(1) E{X(@®)}=n (14-20)
and
() E{X(t)X (t,)} =R, (1, - t,), (14-21)

1.e., for wide-sense stationary processes, the mean 1s a constant and
the autocorrelation function depends only on the difference between
the time indices. Notice that (14-20)-(14-21) does not say anything
about the nature of the probability density functions, and instead deal
with the average behavior of the process. Since (14-20)-(14-21)
follow from (14-16) and (14-18), strict-sense stationarity always
implies wide-sense stationarity. However, the converse 1s not true in
general, the only exception being the Gaussian process.

This follows, since if X(7) 1s a Gaussian process, then by definition
X, =X(),X,=X(,), -, X, =X(¢,) are jointly Gaussian random
variables for any ¢,,¢,---,¢, whose joint characteristic function

1S given by PILLAI/Cha



b, (@00, s,y e LT B (14-22)
X 1220 Ml T

where C_(z,,¢,) 1s as defined on (14-9). If X(¢) is wide-sense
stationary, then using (14-20)-(14-21) in (14-22) we get

ji“(’)k _lzn:icn(ti—tk )00,
(I)X((Dl,(i)z,“-,(ﬂn):e k=1 Sa (14_23)

and hence 1f the set of time indices are shifted by a constant ¢ to
generate a new set of jointly Gaussian random variables X| = X (¢, +¢),
X, =X(t,+c), -, X, =X(¢t, +c) then their joint characteristic
function is identical to (14-23). Thus the set of random variables {X}
and {X/},_, have the same joint probability distribution for all » and
all c, establishing the strict sense stationarity of Gaussian processes
from 1ts wide-sense stationarity.
To summarize 1f X(¢) is a Gaussian process, then

wide-sense stationarity (w.s.s) = strict-sense stationarity (s.s.s).

Notice that since the joint p.d.f of Gaussian random variables depends

. . e . . . 11
only on their second order statistics, which is also the basis . . -



for wide sense stationarity, we obtain strict sense stationarity as well.
From (14-12)-(14-13), (refer to Example 14.2), the process

X(t)=acos(wyt+¢), in (14-11) is wide-sense stationary, but

not strict-sense stationary. te,
Similarly 1f X(¢?) 1s a zero mean wide T=t -t
sense stationary process in Example 14.1, -z r / .t
then 6 in (14-10) reduces to i T/ I
I 2T — 1

2 2 ret o . N0, 00 | ALV v

ol=E{z[}=]_ [ R, (4 -t,)duds,.
. . _|_ _ _ . ) o .

As t,, t, varies from —T to +7, T =t, —¢, varies Fig. 14.2

from —27'to + 2T. Moreover R _(t) 1s a constant
over the shaded region in Fig 14.2, whose area 1s given by (t > 0)

%(2T 1)’ —%(2T—r —dt)’ =(2T —1)dr
and hence the above integral reduces to

2T 2T
= [, Ra@Q2T—|t dt =35 [ R, ()1 ~1p)dr. i

(14-24) PILLAUCha



Systems with Stochastic Inputs
A deterministic system' transforms each input waveform X (¢,€,) into
an output waveform Y (£,S;) =T[ X (¢,5;)] by operating only on the
time variable ¢. Thus a set of realizations at the input corresponding
to a process X(¢) generates a new set of realizations {Y (£,5)} at the
output associated with a new process Y(?).

A

X(t.8,)

W/

Fig. 14.3

5\\

\7\‘

X () N T[] Y (¢)

A 4

Our goal 1s to study the output process statistics in terms of the input
process statistics and the system function.

IA stochastic system on the other hand operates on both the variables ¢ and &. .

PILLAI/Cha



Deterministic Systems

T T

Memoryless Systems Systems with Memory

ro=sxe 7 G

Time-varying  Time-Invariant  Linear systems
systems systems Y (1) =L[X(?)]

Linear-Time Invariant
(LTI) systems

X@)— k() |——YO=] ht-1)X@)dr

LTI system = "h@)X(t-t)dr.
v T PILLAI/Cha



Memoryless Systems:

The output Y(?) 1n this case depends only on the present value of the

input X(¢). 1.e.,

Strict-sense
stationary input

Y(1)=giX ()]

—

Memoryless
system

>

(see (9-76), Text for a proof.)

Wide-sense
stationary input

X(¢) stationary
Gaussian with
R, (1)

—

Memoryless
system

>

—

Memoryless
system

Fig. 14.4

(14-25)

Strict-sense
stationary output.

Need not be
stationary 1n
any sense.

Y(?) stationary,but
not Gaussian with

R, (@)=nR, ().
(see (14-26)). ;
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Theorem: If X(?) 1s a zero mean stationary Gaussian process, and
Y(¢¥) = g[X(¥)], where g(-) represents a nonlinear memoryless device,
then

R, (®)=nR,(t), n=E{g'X)}]. (14-26)
Proof:
R, (1)=EX@)Y(t—1);=E[X()giX(t—1);]
= _”xlg(xz ).f v, (X1 X5 )l dx (14-27)

where X, = X(¢), X, =X(¢—-1) are jointly Gaussian random
variables, and hence
—x A x/2

_ 1
fxlxz(xlaxz) = 275\/@8
‘X:(XlaXz)Ta J_C:(xpxz)T

AZE{ XX*}:(RXX(O) RXX(T)) éLL*

R (x) R,(0) N

PILLAI/Cha



where L 1s an upper triangular factor matrix with positive diagonal

entries. 1.€.,
lll llz
L= :
0 [,

Consider the transformation

Z2L'X=(Z,2,), z=L'x=(z,z)"

so that
E{ZZV=L'"E{XX"\L' =L"'AL =1

and hence 7, Z, are zero mean independent Gaussian random
variables. Also

x=Lz = x =0z +z, x =12z

127272

and hence

* o1 *rxoo ] * 2 2
XA x=zLA Lz=z z=2z +2z,.
17

The Jacobaian of the transformation is given by PILLAI/Cha



[JELT A
Hence substituting these into (14-27), we obtain

—zt /2 —z3/2

RXY (T) — jj:jj: (11121 + llzzz )g(lzzzz)ﬁ °W6
=1,[ ] 28z [, ()], (2,)dzdz,
+ llZ :r:_“j: Zzg(lzzzz )f‘zl (Zl)f‘zz (Zz )d21d22

0
= lnj‘_%%)dzlj_oo g(lzzzz )]Fz2 (Zz )dZZ

+112 +OOZzg(lzzzz) f; (Zz) dZ2
—0 2

1 p-z3/2
E Y Z A
2
[ o 1 —u? /202
— éj_oo ug(u) VR > du,

18

where u =1,,z,. This gives
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R,@)=loby | gu) & plee™ ™ du

df, (),
- du __fu (u)

=—R, ()] g)f,(u)du,

since A=LL gives [,l,,=R_(t).Hence

0 +00
R, ()= R, @) {~gw) /i) +] g, (w)du}
= R, (0)E{g'(X)} =R, (x),

the desired result, where n = E[g'(X)]. Thus if the input to
a memoryless device 1s stationary Gaussian, the cross correlation
function between the input and the output is proportional to the

input autocorrelation function.
19
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Linear Systems: L[-] represents a linear system if
Lia X(6)+a, X (1,)} = a,LIX (1)} +a,L{X (1)}, (14-28)

Let
Y(¢)=L{X(¢)} (14-29)

represent the output of a linear system.
Time-Invariant System: /[-] represents a time-invariant system 1f

Y(£)= LiX () = LIX(t—t,)} =Y (t—1,) (14-30)

1.e., shift in the input results in the same shift in the output also.

If L[] satisfies both (14-28) and (14-30), then 1t corresponds to

a linear time-invariant (LTI) system.

LTI systems can be uniquely represented in terms of their output to

a delta function 2 h(1) Impulse
response of

0 (t ) 7 LTI B h(t) / ‘/ the system

T T \//\v/‘ g

Impulse Flg 14.5 Impulse 20

response PILLAI/Cha



then LY (1)

X (1) Y (1)

ﬁ \\f/\f\

r, — LTI
VAR
- | Y(=|
arbitrary Flg 14.6

input

[ h(t-1)X(1)dr

Eq. (14-31) follows by expressing X(?) as .
X =[] X@)B(t-1)dr

'f:h(r )X (t—1)dt (14-31)

(14-32)

and applying (14-28) and (14-30) to Y (¢) = L{X(¢)}. Thus
Y(t)=L{X(t)}=L{[  X(@)3(t—1)dr}

=[ TX@)LB (t-1)}dr

=[ " X@h(t-t)dt =] h@)

— .'j(:L {X(’C )8 (t —T )d’C } 7 By Linearity

By Time-invariance

X(t—71)drt. (14-33)
PILLAI/Cha



Output Statistics: Using (14-33), the mean of the output process
1s given by

w,(O=E{Y (@)} =| E{X@)h(t-1)dr)
= [ w, @ —t)dr =, (1) *h(2). (14-34)

Similarly the cross-correlation function between the input and output
processes 1s given by

R, (1,1,) = ELX(1)Y(1,)}
=E(X(t)] X7 (1, ~a)h’ ()dot}

=[ TE{X ()X (t, —a)h" (a)do

=[ "R, (t,,t, —a)h" (@)do

=R, (t,,,) %" (¢,). (14-35)

Finally the output autocorrelation function is given by 2
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Ryy(tlatz) — E{Y(t1)Y*(t2)}
= E{[ X (1, BYR(B)B Y (1)}
= [TE(X(t, ~B)Y (1) h(B)dp

=R, (t, - B.t,)h(B)dp
=R_(t,,t,)*h(t), (14-36)

or

Ryy(tptz):Rxx(tlatz)*h*(tz)*h(t1)- (14-37)

() — w1 0)
(2)

R)a’ (tlatz) h*(t2) Rarlily) ? h(tl) — RYY (tlatz)
(b)
23
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In particular if X(?) 1s wide-sense stationary, then we have p (¢)=p,
so that from (14-34)

w,(6)=u, _[j:h(r )dt =, c, aconstant. (14-38)
Also R _(¢,,t,)=R_(t,—1,) so that (14-35) reduces to

R, (t,t,)=] R, (t—t, +a)h"(a)da
=R _(t)*h’ (<)=R,_(t), T =t —t,. (14-39)

Thus X(7) and Y(¢) are jointly w.s.s. Further, from (14-36), the output
autocorrelation simplifies to

R,(tut)=[ R,(t,—-B-t,)h(B)dB, =t -t,

=R _(t)*h(t)=R (7). (14-40)
From (14-37), we obtain
R (t)=R_(t)*h (=t)*h(T). (14-41)

PILLAI/Cha



From (14-38)-(14-40), the output process 1s also wide-sense stationary.
This gives rise to the following representation

X (1)
wide-sense
stationary process

X(?)
strict-sense

stationary process

X (¢
Gau(s s)ian

process (also
stationary)

—

LTI system
h(?)

>

(a)

—

LTI system
h(?)

(b)

Linear system

(c)
Fig. 14.8

Y (1)
wide-sense
stationary process.

Y(1)
strict-sense

stationary process
(see Text for proof)

Y (1)
Gaussian process

(also stationary)

25
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White Noise Process:
W(¢) 1s said to be a white noise process 1f

R, (tlatz) — Q(tl )0 (tl _tz)a (14-42)

i.e., E[W(t)) W(t,)] =0 unless t,= t..
W(¥) 1s said to be wide-sense stationary (w.s.s) white noise
if E[W(¢)] = constant, and

R, (t,t,)=qo(t —t,)=qo (). (14-43)

If W(¢) 1s also a Gaussian process (white Gaussian process), then all of
its samples are independent random variables (why?).

. . ITI Colored noise
White noise — | —
40 h(?) N@)=h()*W(t)
Fig. 14.9
For w.s.s. white noise input W(¥), we have ”6
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E[N(@)]=n, j j: h(t)dt, a constant (14-44)

and
R,(@)=q8(@)*h (~1)*h()
= gh' (1) *h(1) = gp(®) (14-45)
where
p()=h(@)*h'(=1) =] h(@)h (@ +1)da. (14-46)

Thus the output of a white noise process through an LTI system
represents a (colored) noise process.
Note: White noise need not be Gaussian.

“White” and “Gaussian” are two different concepts!

27
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Upcrossings and Downcrossings of a stationary Gaussian process:
Consider a zero mean stationary Gaussian process X(¢) with

autocorrelation function R (t). An upcrossing over the mean value

occurs whenever the realization X(7)

passes through zero with L X(0)

positive slope. Let PA?

. Upcrossings
represent the probability
of such an upcrossing in v//\ e
the interval (¢, f + At). \/\/ /\/ .t

We wish to determine P- Fig. 14.10 Downcrossing

Since X(¢) 1s a stationary Gaussian process, its derivative process X'(t)

1s also zero mean stationary Gaussian with autocorrelation function
R_.(t)=—-R! (t) (see(9-101)-(9-106), Text). Further X(¢) and X'(¢)

are jointly Gaussian stationary processes, and since (see (9-106), Text)

RXX,(’C)=—dRXX(T), 28

dt PILLAI/Cha




we have
dR, (—t) _dR, (1)
d(—) dt

R _(—1t)=- =-R,. (1)

which for T =0 gives
R _(0)=0 = E[X®)X'(1)]=0
1.e., the jointly Gaussian zero mean random variables
X, =X({#) and X,=X'(¢)
are uncorrelated and hence independent with variances
6. =R _(0) and o, =R_ (0)=—R" (0)>0

respectively. Thus

xl2 x2

leXz(xl’XZ):fX(xl)fx(xz)zz e

no O,

To determine p, the probability of upcrossing rate,

_ +1j
1 [2512 262

(14-47)

(14-48)

(14-49)

(14-50)

(14-51)

29
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we argue as follows: In an interval(Z, f + At), the realization moves
from X(r) = X1 to X(t+At)=X()+ X'(H)At = X, + X, At,

and hence the realization intersects with the zero level somewhere
1n that interval 1f

X, <0, X,>0, and X(@+AH)=X,+X,At>0 (14-52)

Le., X, >-X At

A X (1)

Hence the probability of upcrossing L X(t+ A
in (z,1+ At) 1s given by tJ/t L .l
° 0 0 '
- /!
pAt J x;=0 J.Xl ==Xy At leXZ (xl ’ x2 )dxldxz X (1) Flg 141 1
=, fuGdx, [ f (), (14-53)
Differentiating both sides of (14-53) with respect to AZ, we get
p =] S ()X, [, (—x,At)dx, (14-54)
and letting At — 0, Eq. (14-54) reduce to 30
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1

= i) (O, =5 s [ S (),
1 1, o~ 1 [-R'(0)
= R (0)2 2/“)_2n\/ R.(0) (14-55)

[where we have made use of (5-78), Text]. There 1s an equal
probability for downcrossings, and hence the total probability for
crossing the zero line in an interval (¢,7+ Ar) equals p A¢, where

p, = %J— R, (0)/R,(0) > 0. (14-56)

It follows that in a long interval 7, there will be approximately p T
crossings of the mean value. If — R’ (0) 1s large, then the
autocorrelation function R, (t) decays more rapidly as T moves
away from zero, implying a large random variation around the origin
(mean value) for X(¢), and the likelihood of zero crossings should
increase with increase in — R” (0), agreeing with (14-56). 3
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Discrete Time Stochastic Processes:

A discrete time stochastic process X, = X(nT) 1s a sequence of
random variables. The mean, autocorrelation and auto-covariance
functions of a discrete-time process are gives by

L, = E{X(nT)} (14-57)
R(ny,ny) = E{X(n,T)X " (n,T)} (14-58)

and
C(n,,n,)=R(n,n,)— W, u; (14-59)

respectively. As before strict sense stationarity and wide-sense
stationarity definitions apply here also.
For example, X(n7) 1s wide sense stationary if

E{X(nT)}=u, a constant (14-60)

and

E[X{(k+n)T}X {(K)T}]=R(n)=r, =7, (14-61) =
PILLAI/Cha



i.e., R(ny, np) = R(ny— ny) = R*(ny— ny). The positive-definite
property of the autocorrelation sequence in (14-8) can be expressed
in terms of certain Hermitian-Toeplitz matrices as follows:
Theorem: A sequence {r }"~ forms an autocorrelation sequence of
a wide sense stationary stochastic process if and only 1f every
Hermitian-Toeplitz matrix 7;, given by

/ﬁ> non v, \
v 4 )
T = 1 o n -1 _T (14-62)
G

1s non-negative (positive) definite for n =0, 1, 2,---, 0.

Proof: Let a =[a,,a,,---,a,] represent an arbitrary constant vector.
Then from (14-62), o
aT,a=3% % aarn, (14-63)
i=0 k=0

since the Toeplitz character gives (7)), , =r,_,. Using (14-61), s
Eq. (14-63) reduces to PILLAI/Cha



S
S

aT,a= a.a, E{X(kT)X (iT)} = E{

Zn:aZX(kT) }>o. (14-64)

From (14-64), if X(nT) 1s a wide sense stationary stochastic process
then T, 1s a non-negative definite matrix for every 5 =0,1,2,---, .
Similarly the converse also follows from (14-64). (see section 9.4, Text)

If X(nT) represents a wide-sense stationary input to a discrete-time
system {/(n1)}, and Y(nT) the system output, then as before the cross
correlation function satisfies

R, (n)=R_ (n)*h" (-n) (14-65)
and the output autocorrelation function is given by
R, (n) =R, (n)*h(n) (14-66)
. R _(n)=R_(n)*h (-n)*h(n). (14-67)
Thus wide-sense stationarity from input to output 1s preserved
for discrete-time systems also. 34
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Auto Regressive Moving Average (ARMA) Processes

Consider an input — output representation
p q
X(n)=-Ya,X(n—k)+ Y bW (n—k), (14-68)
k=1 k=0

where X(n) may be considered as the output of a system {/4(n)}
driven by the input W(n).
Z — transform of W(n) h(n) X(n)

(14-68) gives Fig.14.12

p q
X(Z)Zakz_k = W(Z)Zbkz_k, a, =1 (14-69)
k=0 k=0

or

G by+bz ' +bz" ++bz 1
H(z)= Y hik)z* = X2 0Tz o 2 4 8(2)
k=0

W(z) - l+az"' +a,z” +eota,z”’ - A(3ZS)
(14_70) PILLAI/Cha



represents the transfer function of the associated system response {4(n)}
in Fig 14.12 so that

X(n)= 3 h(n = k)W (k). (14-71)

Notice that the transfer function H(z) in (14-70) 1s rational with p poles
and g zeros that determine the model order of the underlying system.
From (14-68), the output undergoes regression over p of its previous
values and at the same time a moving average based on W(n), W(n—1),
..., W(n — q) of the mnput over (g + 1) values 1s added to it, thus
generating an Auto Regressive Moving Average (ARMA (p, q))
process X(n). Generally the input {#(n)} represents a sequence of
uncorrelated random variables of zero mean and constant variance ¢ 2
50 that R,, (1) =025 (n) (14-72)
If in addition, {#(n)} is normally distributed then the output {X(»)}
also represents a strict-sense stationary normal process.

If g =0, then (14-68) represents an AR(p) process (all-pole

process), and if p = 0, then (14-68) represents an MA(q) PILLAL/Cha



process (all-zero process). Next, we shall discuss AR(1) and AR(2)
processes through explicit calculations.
AR(1) process: An AR(1) process has the form (see (14-68))

X(n)y=aX(n—-1)+W(n) (14-73)

and from (14-70) the corresponding system transfer

H(z)=

= Za" % (14-74)

provided | a | < 1. Thus
h(my=a", lal<l (14-75)

represents the impulse response of an AR(1) stable system. Using

(14-67) together with (14-72) and (14-75), we get the output

autocorrelation sequence of an AR(1) process to be

R (n)=c8(n)*{a"}*{a"}=c.> a""a" =c
k=0

n|

a
1_

37
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where we have made use of the discrete version of (14-46). The
normalized (in terms of R,(0)) output autocorrelation sequence 1s
given by

R _(n \

It 1s 1nstructive to compare an AR(1) model discussed above by
superimposing a random component to it, which may be an error
term associated with observing a first order AR process X(n). Thus

Y(n)=X(n)+V(n) (14-78)

where X(n) ~ AR(1) as in (14-73), and V(») 1s an uncorrelated random
sequence with zero mean and variance o that is also uncorrelated
with {W(n)}. From (14-73), (14-78) we obtain the output
autocorrelation of the observed process Y(n) to be

R,(n)=R, (0)+ R, (n) =R, (n)+c23 (n)

n|

» a

2
"1—a

=0 +G0 (n) (14-79) 4
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so that its normalized version is given by

r R (1) 1 n=>0
p,(n) = =1
R (0) |ca n==1, £2,.- (14-80)
where
G 2
C = v <.

_G; +o’(1-a’) (14-81)
Egs. (14-77) and (14-80) demonstrate the effect of superimposing
an error sequence on an AR(1) model. For non-zero lags, the
autocorrelation of the observed sequence {Y(n)}1s reduced by a constant
factor compared to the original process {X(n)}.
From (14-78), the superimposed

A

error sequence V(n) only affects 7 Pr (O =0, =1

the corresponding term 1n Y(n) o () >p(B)

(term by term). However, ‘ . \ Y Y

a particular term in the “input sequence” | 5 05 | |k I | [

W(n) affects X(n) and Y(n) as well as

[l subsequent observations. . 39
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AR(2) Process: An AR(2) process has the form
X(n)=aX(n-1)+a, X(n=-2)+W(n) (14-82)
and from (14-70) the corresponding transfer function 1s given by

1 b . b

l—az"'—a,z ] -2z 1-A,z"

H(z)= ih(n)z‘” _ (14-83)

so that
h0)=1, h(l)=a,, h(n)=ah(n—-1)+a,h(n-2), n=2 (14-84)

and 1n term of the poles A, and A, of the transfer function,
from (14-83) we have

h(n)=bA\ +b,\:, n>0 (14-85)

that represents the impulse response of the system.
From (14-84)-(14-85), we also have b, +b, =1, b\, +b,A, =a,.
From (14-83),

M+ =a, M =-a,, (14-86) PILLi:)I/Cha



and H(z) stable implies | A, [<1, |A, |<]1.
Further, using (14-82) the output autocorrelations satisfy the recursion
R, (n)=E{X(n+m)X (m)}

=E{[a X(n+m—-1)+a,X(n+m—-2)]X (m)}

+EW (n %?X*(m)}
=aR, (n-1)+a,R, (n-2) (14-87)
and hence their normalized version 1s given by
s R, (n)
(m=——==agp,(n-D+a,p, (n-2). 14-
p,(n) R_(0) 1P ( )+a,p,(n—-2) (14-83)

By direct calculation using (14-67), the output autocorrelations are
given by
R (n)=R,, () k" (=n)*h(n) = 2h" (~n) * h(n)

=23 A (n+ k) * h(k)
o0 (14-89)

41
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where we have made use of (14-85). From (14-89), the normalized
output autocorrelations may be expressed as

ﬁi E’g; — e o) (14-90)
where ¢; and ¢, are appropriate constants.

Damped Exponentials: When the second order system 1n
(14-83)-(14-85) 1s real and corresponds to a damped exponential

response, the poles are complex conjugate which gives a’ +4a, <0
in (14-83). Thus

A-re?, A=A, r<l. (14-91)

p,(n)=

In that case ¢, =c, =c e’ in (14-90) so that the normalized
correlations there reduce to

p.(n)=2Ref{c,A; }=2cr" cos(nd +o). (14-92)
But from (14-86)
A +A, =2rcos® =a,, ' =-a,<l, (14-93) =«
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and hence 2rsin® = \/ —(a} +4a,) >0 which gives

tan = V(@ +44:) (14-94)
al
Also from (14-88)
p.(D=a,p,(0)+a,p,(=D=a,+a,p,(1)
so that
p, (D)= faz =2crcos(® +o) (14-95)

where the later form is obtained from (14-92) with n = 1. But p,(0)=1
in (14-92) gives

2ccosp =1, or c=1/2cose. (14-96)

Substituting (14-96) into (14-92) and (14-95) we obtain the normalized

output autocorrelations to be “
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1, cos(nB +
o, (1) = (—a,)"” (Cos(p ©) g <l (14-97)

where @ satisfies

cos@©@ +¢) a, 1
cos0 l—a, \—a,

Thus the normalized autocorrelations of a damped second order
system with real coefficients subject to random uncorrelated
impulses satisfy (14-97).

(14-98)

More on ARMA processes

From (14-70) an ARMA (p, g) system has only p + ¢ + 1 independent
coefficients, (a,,k=1—> p, b,,i=0— gq), and hence its impulse
response sequence {/,} also must exhibit a similar dependence among
them. In fact according to P. Dienes (The Taylor series, 1931), .
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an old result due to Kronecker! (1881) states that the necessary and
sufficient condition for H(z) =) " hz™* to represent a rational
system (ARMA) is that

det H, =0, n=>=N (forall sufficiently large n), (14-99)

where

1>
S
Ny

(\)
Ny

(98]
Ny

.= - (14-100)

\hn hn+l hn+2 th J
1.e., In the case of rational systems for all sufficiently large n, the

Hankel matrices H, in (14-100) all have the same rank.

The necessary part easily follows from (14-70) by cross multiplying
and equating coefficients of like powers of z 7% k=0,1,2,---.

'Among other things “God created the integers and the rest is the work of man.” (Leopold Kronecker) 45
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This gives

bo :ho
b =h.a +h (14-101)
| 0 |

b,=ha,+ha,  +--+h

OZhOCl +.e+ h '—1a1+h L 121, (14-102)

+ hlaqﬂ'—l q+i

q+i

For systems with ¢ < p—1, letting i=p—¢q,p—q+1,---,2p—q
in (14-102) we get

ha,+ha, +--+h,_a+h =0

ha, +h a _ +-+h, a+h, =0 (14-103)

p—1

which gives det H, = 0. Similarly i = p—g+1,--- gives

46
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ha,, +ha,+---+h, =0

p+1
ha, +ha,+--+h, ,=0
hp+1ap+1 + hp+2ap T T h2p+2 = O’ (14-104)

and that gives det H,,, = 0 etc. (Notice thata, , =0, k=1,2,--- )
(For sufficiency proof, see Dienes.)
It 1s possible to obtain similar determinantial conditions for ARMA
systems 1n terms of Hankel matrices generated from its output
autocorrelation sequence.

Referring back to the ARMA (p, g) model in (14-68),
the imnput white noise process w(n) there 1s uncorrelated with its own
past sample values as well as the past values of the system output.
This gives

E{wn)w (n—-k)}=0, k=1 (14-105)

E{wn)x (n—k)}=0, k>1. (14-106)  #
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Together with (14-68), we obtain
E{x(n)x (n—i)}
= S x(n—k)x (=) + b w(n— k)W (n— i)}

I’;.

=S ayr, + Y b wn—k)x (n—1) (14-107)

and hence 1n general

P
dYar  +r#0, i<q (14-108)
k=1
and
P
dar , +r=0, i>q+]l. (14-109)
k=1

Notice that (14-109) 1s the same as (14-102) with {4, } replaced .
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by {r,} and hence the Kronecker conditions for rational systems can
be expressed in terms of its output autocorrelations as well.

Thus 1f X(n) ~ ARMA (p, q) represents a wide sense stationary
stochastic process, then its output autocorrelation sequence {r,}

k>0,

satisfies
rank D _, =rank D, = p,
where
(v, )
D A h L o Ly
k_ .
\"t Ter1 Ter2 T ’Ek)

(14-110)

(14-111)

represents the (k +1)x(k +1) Hankel matrix generated from
Ros 15ttt s o005 By - It follows that for ARMA (p, g) systems, we have

det D, =0,

for all sufficiently large n.

(14-112) #

PILLAI/Cha



