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14. Stochastic Processes 

Let      denote the random outcome of an experiment. To every such 
outcome suppose a waveform

is assigned.
The collection of such 
waveforms form a 
stochastic process. The 
set of          and the time 
index t can be continuous
or discrete (countably 
infinite or finite) as well.
For fixed             (the set of 
all experimental outcomes),              is a specific time function.
For fixed t,

is a random variable. The ensemble of all such realizations
over time represents the stochastic
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process X(t). (see Fig 14.1). For example

where      is a uniformly distributed random variable in       
represents a stochastic process. Stochastic processes are everywhere:
Brownian motion, stock market fluctuations, various queuing systems
all represent stochastic phenomena.

If X(t) is a stochastic process, then for fixed t, X(t) represents
a random variable. Its distribution function is given by

Notice that              depends on t, since for a different t, we obtain
a different random variable. Further 

represents the first-order probability density function of the 
process X(t).
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For t = t1 and t = t2,  X(t) represents two different random variables
X1 = X(t1) and X2 = X(t2) respectively. Their joint distribution is 
given by 

and

represents the second-order density function of the process X(t).
Similarly                                             represents the nth order density
function of the process  X(t). Complete specification of the stochastic
process  X(t) requires the knowledge of                                     
for all                                and for all n. (an almost impossible task
in reality).
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Mean of  a Stochastic Process:

represents the mean value of a process X(t). In general, the mean of 
a process can depend on the time index t.

Autocorrelation function of a process X(t) is defined as 

and it represents the interrelationship between the random variables
X1 = X(t1) and X2 = X(t2) generated from the process X(t).             

Properties:

1.

2.                                              
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3.                  represents a nonnegative definite function, i.e., for any
set of constants 

Eq. (14-8) follows by noticing that                                     
The function

represents the autocovariance function of the process X(t).
Example 14.1
Let 
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Similarly 
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Stationary Stochastic Processes
Stationary processes exhibit statistical properties that are 

invariant to shift in the time index. Thus, for example, second-order
stationarity implies that the statistical properties of  the pairs 
{X(t1) , X(t2) } and {X(t1+c) , X(t2+c)} are the same for any c. 
Similarly first-order stationarity implies that the statistical properties 
of X(ti) and X(ti+c) are the same for any c.

In strict terms, the statistical properties are governed by the
joint probability density function. Hence a process is nth-order
Strict-Sense Stationary (S.S.S) if

for any c, where the left side represents the joint density function of 
the random variables                                            and
the right side corresponds to the joint density function of the random
variables                                                       
A process X(t) is said to be strict-sense stationary if (14-14) is 
true for all                  
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For a first-order strict sense stationary process,
from (14-14) we have

for any c. In particular c = – t gives 

i.e., the first-order density of X(t) is independent of t. In that case

Similarly, for a second-order strict-sense stationary process
we have from (14-14)

for any c. For c = – t2 we get  
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i.e., the second order density function of a strict sense stationary         
process depends only on the difference of the time indices      
In that case the autocorrelation function is given by

i.e., the autocorrelation function of a second order strict-sense
stationary process depends only on the difference of the time   
indices 
Notice that (14-17) and (14-19) are consequences of the stochastic 
process being first and second-order strict sense stationary. 
On the other hand, the basic conditions for the first and second order 
stationarity – Eqs. (14-16) and (14-18) – are usually difficult to verify.
In that case, we often resort to a looser definition of stationarity,
known as Wide-Sense Stationarity (W.S.S), by making use of
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(14-17) and (14-19) as the necessary conditions. Thus, a process X(t)
is said to be Wide-Sense Stationary if
(i)
and
(ii)                                                            

i.e., for wide-sense stationary processes, the mean is a constant and 
the autocorrelation function depends only on the difference between 
the time indices. Notice that (14-20)-(14-21) does not say anything 
about the nature of the probability density functions, and instead deal 
with the average behavior of the process. Since (14-20)-(14-21) 
follow from (14-16) and (14-18), strict-sense stationarity always 
implies wide-sense stationarity. However, the converse is not true in 
general, the only exception being the Gaussian process.
This follows, since if  X(t) is a Gaussian process, then by definition

are jointly Gaussian random
variables for any                 whose joint characteristic function 
is given by

µ=)}({ tXE
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where                   is as defined on (14-9). If X(t) is wide-sense 
stationary, then using (14-20)-(14-21) in (14-22) we get

and hence if the set of time indices are shifted by a constant c to 
generate a new set of jointly Gaussian random variables         

then their joint characteristic          
function is identical to (14-23). Thus the set of random variables       
and              have the same joint probability distribution for all n and 
all c, establishing the strict sense stationarity of Gaussian processes 
from its wide-sense stationarity.

To summarize if X(t) is a Gaussian process, then
wide-sense stationarity (w.s.s)            strict-sense stationarity (s.s.s).

Notice that since the joint p.d.f of Gaussian random variables depends
only on their second order statistics, which is also the basis
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for wide sense stationarity, we obtain strict sense stationarity as well.
From (14-12)-(14-13), (refer to Example 14.2),  the process 

in (14-11) is wide-sense stationary, but
not strict-sense stationary. 

Similarly if X(t) is a zero mean wide 
sense stationary process in Example 14.1, 
then       in (14-10) reduces to

As t1, t2 varies from –T to  +T,                 varies
from –2T to + 2T. Moreover             is a constant
over the shaded region in Fig 14.2, whose area is given by 

and hence the above integral reduces to

),cos()( 0 ϕω += tatX

PILLAI/Cha

2
zσ

.)(}|{|
 

 

 

 2121
22 ∫ ∫− −

−==
T

T

T

Tz dtdtttRzE XXσ

21 tt −=τ
)(τXXR

)0( >τ

τττττ dTdTT )2()2(
2
1)2(

2
1 22 −=−−−−

.)1)((|)|2)((
2 

2 2
||

2
12 

2 
2 ∫∫ −−

−=−=
T

t TT

T

tz dRdTR XXXX τττττσ τ

(14-24)

T− T

T−τ

τ

τ−T2

2
t

1
t

Fig. 14.2

21
tt −=τ



13

Systems with Stochastic Inputs
A deterministic system1 transforms each input waveform              into
an output waveform                                   by operating only on the 
time variable t. Thus a set of realizations at the input corresponding 
to a process X(t) generates a new set of realizations                at the 
output associated with a new process Y(t).
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Our goal is to study the output process statistics in terms of the input
process statistics and the system function.
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Deterministic Systems

Systems with Memory

Time-Invariant
systems

Linear systems

Linear-Time Invariant
(LTI) systems

Memoryless Systems
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Memoryless Systems:
The output Y(t) in this case depends only on the present value of the 
input X(t).  i.e.,        (14-25)
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Theorem: If X(t) is a zero mean stationary Gaussian process, and
Y(t) = g[X(t)], where        represents a nonlinear memoryless device, 

then

Proof:

where                                             are jointly Gaussian random 
variables, and hence
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where L is an upper triangular factor matrix with positive diagonal 
entries. i.e.,

Consider the transformation

so that

and hence Z1, Z2 are zero mean independent Gaussian random 
variables. Also

and hence

The Jacobaian of the transformation is given by
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Hence substituting these into (14-27), we obtain

where                  This gives
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a memoryless device is stationary Gaussian, the cross correlation 
function between the input and the output is proportional to the
input autocorrelation function.
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Linear Systems: represents a linear system if

Let 

represent the output of a linear system.
Time-Invariant System: represents a time-invariant system if

i.e., shift in the input results in the same shift in the output also.
If          satisfies both (14-28) and (14-30), then it corresponds to 
a linear time-invariant (LTI) system.
LTI systems can be uniquely represented in terms of their output to 
a delta function
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Eq. (14-31) follows by expressing X(t) as

and applying (14-28) and (14-30) to                            Thus)}.({)( tXLtY =
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Output Statistics: Using (14-33), the mean of the output process
is given by

Similarly the cross-correlation function between the input and output
processes is given by

Finally the output autocorrelation function is given by
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In particular if  X(t) is wide-sense stationary, then we have
so that from (14-34)

Also                                       so that (14-35) reduces to

Thus X(t) and Y(t) are jointly w.s.s. Further, from (14-36), the output 
autocorrelation simplifies to

From (14-37), we obtain
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From (14-38)-(14-40), the output process is also wide-sense stationary.
This gives rise to the following representation
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White Noise Process:
W(t) is said to be a white noise process if 

i.e.,  E[W(t1) W*(t2)] = 0  unless t1 = t2.
W(t) is said to be wide-sense stationary (w.s.s) white noise 
if E[W(t)] = constant, and 

If W(t) is also a Gaussian process (white Gaussian process), then all of 
its samples are independent random variables (why?).

For w.s.s. white noise input W(t), we have
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and 

where 

Thus the output of a white noise process through an LTI system 
represents a (colored) noise process.
Note: White noise need not be Gaussian.

“White” and “Gaussian” are two different concepts!
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Upcrossings and Downcrossings of a stationary Gaussian process:
Consider a zero mean stationary Gaussian process X(t) with

autocorrelation function              An upcrossing over the mean value 
occurs whenever the realization X(t) 
passes through zero with
positive slope. Let           
represent the probability
of such an upcrossing in
the interval                  
We wish to determine                                            

Since X(t) is a stationary Gaussian process, its derivative process      
is also zero mean stationary Gaussian with autocorrelation function 

(see (9-101)-(9-106), Text). Further X(t) and       
are jointly Gaussian stationary processes, and since (see (9-106), Text)
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we have 

which for           gives

i.e., the jointly Gaussian zero mean random variables

are uncorrelated and hence independent with variances

respectively. Thus 

To determine      the probability of upcrossing rate, 
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we argue as follows: In an interval                  the realization moves 
from X(t) = X1 to                                                             
and hence the realization intersects with the zero level somewhere
in that interval if 

i.e.,
Hence the probability of upcrossing 
in                   is given by                                

Differentiating both sides of (14-53) with respect to        we get

and letting                Eq. (14-54) reduce to
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[where we have made use of (5-78), Text]. There is an equal 
probability for downcrossings, and hence the total probability for 
crossing the zero line in an interval                  equals   where

It follows that in a long interval T, there will be approximately        
crossings of the mean value. If                   is large, then the 
autocorrelation function              decays more rapidly as    moves
away from zero, implying a large random variation around the origin 
(mean value) for X(t), and the likelihood of zero crossings should 
increase with increase in                   agreeing with (14-56).
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Discrete Time Stochastic Processes:

A discrete time stochastic process Xn = X(nT) is a sequence of 
random variables. The mean, autocorrelation and auto-covariance 
functions of a discrete-time process are gives by

and

respectively. As before strict sense stationarity and wide-sense 
stationarity definitions apply here also.
For example, X(nT) is wide sense stationary if

and

)}()({),(

)}({         

2
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2121 21
),(),( nnnnRnnC µµ−=

(14-57)

(14-58)

(14-59)

constanta  nTXE    ,)}({ µ= (14-60)

PILLAI/Cha
(14-61)* *[ {( ) } {( ) }] ( ) n nE X k n T X k T R n r r−+ = = =∆



33

i.e., R(n1, n2) = R(n1 – n2) = R*(n2 – n1). The positive-definite 
property of the autocorrelation sequence in (14-8) can be expressed 
in terms of certain Hermitian-Toeplitz matrices as follows: 
Theorem: A sequence             forms an autocorrelation sequence of
a wide sense stationary stochastic process if and only if every
Hermitian-Toeplitz matrix Tn given by

is non-negative (positive) definite for                          
Proof: Let                                 represent an arbitrary constant vector.
Then from (14-62),

since the Toeplitz character gives                        Using (14-61),
Eq. (14-63) reduces to 
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From (14-64), if X(nT) is a wide sense stationary stochastic process
then Tn is a non-negative definite matrix for every
Similarly the converse also follows from (14-64). (see section 9.4, Text)

If X(nT) represents a wide-sense stationary input to a discrete-time
system {h(nT)}, and Y(nT) the system output, then as before the cross
correlation function satisfies

and the output autocorrelation function is given by

or

Thus wide-sense stationarity from input to output is preserved 
for discrete-time systems also.
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Auto Regressive Moving Average (ARMA) Processes

Consider an input – output representation

where X(n) may be considered as the output of a system {h(n)}
driven by the input W(n).                                                              
Z – transform of 
(14-68) gives

or
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represents the transfer function of the associated system response {h(n)}
in Fig 14.12 so that 

Notice that the transfer function H(z) in (14-70) is rational with p poles 
and q zeros that determine the model order of the underlying system.
From (14-68), the output undergoes regression over p of its previous 
values and at the same time a moving average based on           

of the input over (q + 1) values is added to it, thus 
generating an Auto Regressive Moving  Average (ARMA (p, q)) 
process X(n). Generally the input {W(n)} represents a sequence of 
uncorrelated random variables of zero mean and constant variance
so that

If in addition, {W(n)} is normally distributed then the output {X(n)} 
also represents a strict-sense stationary normal process.

If  q = 0, then (14-68) represents an AR(p) process (all-pole 
process), and if  p = 0, then (14-68) represents an MA(q) PILLAI/Cha
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process (all-zero process). Next, we shall discuss AR(1) and AR(2)
processes through explicit calculations.
AR(1) process: An AR(1) process has the form (see (14-68))

and from (14-70) the corresponding system transfer

provided | a | < 1. Thus                                                     

represents the impulse response of an AR(1) stable system. Using
(14-67) together with (14-72) and (14-75), we get the output 
autocorrelation sequence of an AR(1) process to be 
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where we have made use of the discrete version of (14-46). The 
normalized (in terms of RXX (0)) output autocorrelation sequence is
given by                                                        

It is instructive to compare an AR(1) model discussed above by 
superimposing a random component to it, which may be an error 
term associated with observing a first order AR process X(n). Thus 

where X(n) ~ AR(1) as in (14-73), and V(n) is an uncorrelated random
sequence with zero mean and variance       that is also uncorrelated 
with {W(n)}. From (14-73), (14-78) we obtain the output 
autocorrelation of the observed process Y(n) to be 
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so that its normalized version is given by

where

Eqs. (14-77) and (14-80) demonstrate the effect of superimposing 
an error sequence on an AR(1) model. For non-zero lags, the 
autocorrelation of the observed sequence {Y(n)}is reduced by a constant
factor compared to the original process {X(n)}.
From (14-78), the superimposed
error sequence V(n) only affects
the corresponding term in Y(n)
(term by term). However,
a particular term in the “input sequence”
W(n) affects X(n) and Y(n) as well as
all subsequent observations.
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AR(2) Process: An AR(2) process has the form 

and from (14-70) the corresponding transfer function is given by

so that 

and in term of the poles                  of the transfer function, 
from (14-83) we have

that represents the impulse response of the system. 
From (14-84)-(14-85), we also have                                               
From (14-83), 
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and H(z) stable implies
Further, using (14-82) the output autocorrelations satisfy the recursion

and hence their normalized version is given by

By direct calculation using (14-67), the output autocorrelations are 
given by
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where we have made use of (14-85). From (14-89), the normalized
output autocorrelations may be expressed as

where c1 and c2 are appropriate constants.
Damped Exponentials: When the second order system in 
(14-83)-(14-85) is real and corresponds to a damped exponential 
response, the poles are complex conjugate which gives           
in (14-83). Thus    

In that case                          in (14-90) so that the normalized 
correlations there reduce to 

But from (14-86)
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and hence                                                  which gives

Also from (14-88)

so that 

where the later form is obtained from (14-92) with n = 1. But              
in (14-92) gives 

Substituting (14-96) into (14-92) and (14-95) we obtain the normalized
output autocorrelations to be
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where     satisfies

Thus the normalized autocorrelations of a damped second order 
system with real coefficients subject to random uncorrelated 
impulses satisfy (14-97).

More on ARMA processes

From (14-70) an ARMA (p, q) system has only p + q + 1 independent
coefficients,                                                   and hence its impulse 
response sequence {hk} also must exhibit a similar dependence among
them. In fact according to P. Dienes (The Taylor series, 1931),
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an old result due to Kronecker1 (1881) states that the necessary and 
sufficient condition for                                to represent a rational 
system (ARMA) is that 

where

i.e., In the case of rational systems for all sufficiently large n, the
Hankel matrices Hn in (14-100) all have the same rank.

The necessary part easily follows from (14-70) by cross multiplying
and equating coefficients of like powers of 

1Among other things “God created the integers and the rest is the work of man.” (Leopold Kronecker)
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This gives

For systems with
in (14-102) we get

which gives det Hp = 0. Similarly                            gives 1,i p q= − +
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and that gives det Hp+1 = 0 etc. (Notice that                                    )
(For sufficiency proof, see Dienes.)
It is possible to obtain similar determinantial conditions for ARMA 
systems in terms of Hankel matrices generated from its output
autocorrelation sequence.

Referring back to the ARMA (p, q) model in (14-68), 
the input white noise process w(n) there is uncorrelated with its own
past sample values as well as the past values of the system output.
This gives
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Together with (14-68), we obtain

and hence in general

and

Notice that (14-109) is the same as (14-102) with {hk} replaced
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by {rk} and hence the Kronecker conditions for rational systems can
be expressed in terms of its output autocorrelations as well.
Thus if X(n) ~ ARMA (p, q) represents a wide sense stationary 
stochastic process, then its output autocorrelation sequence {rk} 
satisfies

where

represents the                          Hankel matrix generated from 
It follows that for ARMA (p, q) systems, we have
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