16. Mean Square Estimation

Given some information that 1s related to an unknown quantity of
interest, the problem 1s to obtain a good estimate for the unknown in
terms of the observed data.

Suppose X ,X,,---,X represent a sequence of random
variables about whom one set of observations are available, and Y
represents an unknown random variable. The problem 1s to obtain a
good estimate for Y in terms of the observations X, X, ,---, X .
Let A
Y=¢(X, X, X,)=0(X) (16-1)
represent such an estimate for Y.

Note that ¢ () can be a linear or a nonlinear function of the observation

X, X,, -, X . Clearly
e(X)=Y-Y=Y-0(X) (16-2)

. . 2
represents the error in the above estimate, and | € |"the square of
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the error. Since € is a random variable, £{|€ [’} represents the mean
square error. One strategy to obtain a good estimator would be to
minimize the mean square error by varying over all possible forms
of ©®(-), and this procedure gives rise to the Minimization of the
Mean Square Error (MMSE) criterion for estimation. Thus under
MMSE criterion,the estimator @(+) is chosen such that the mean
square error F{|g |} 1s at its minimum.

Next we show that the conditional mean of Y given X is the
best estimator 1n the above sense.
Theorem1: Under MMSE criterion, the best estimator for the unknown
Ymterms of X,,X,,---,X 1s given by the conditional mean of ¥
gives X. Thus

Y=p(X)=E{Y|X}. (16-3)

Proof : Let Y = (X) represent an estimate of Y in terms of
X =(X,,X,, -, X,) Then the error ¢ =y —Y, and the mean square
error 1s given by

ol =E{|e Py =E{Y -V} =E(Y—o(X)F}  (16-4) pyin



Since
E[z]=E,[E.{z| X}] (16-5)

we can rewrite (16-4) as

o; = E{[Y - [} = Ex[E,{|Y —o(X)['|X}]

V4 V4

where the inner expectation 1s with respect to Y, and the outer one 1s
with respect to X.

Thus , ,
G, =E[E{|Y-o(X)|" | X}]

=[TE{|Y —o(X) [ | X} f, (X)dx. (16-6)

To obtain the best estimator ¢, we need to minimize ¢’ in (16-6)
with respect to ¢. In (16-6), since f,(X) >0, E{|Y —o(X)]? X}>0,
and the variable ® appears only in the integrand term, minimization
of the mean square error ¢ in (16-6) with respect to ¢ is
equivalent to minimization of E{|Y —p(X)/’ X} with respect to ¢
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Since X 1s fixed at some value, ¢(X) 1s no longer random,
and hence minimization of £{|y —p(X) | ‘ X} 1s equivalent to

0 ) B
%E{IY—@(X)I X}=0. (16-7)
This gives
E{Y —o(X)| X}=0
or
EY | X} -E{o(X)| X} =0. (16-8)
But
E{p(X) | X} =9(X), (16-9)

since when X =x,0(X) 1s a fixed number ¢(x). Using (16-9)

4
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in (16-8) we get the desired estimator to be
Y=(X)=E{Y|X}=E{Y|X,,X,,~--,X,}. (16-10)

Thus the conditional mean of Y given X,, X,,--, X, represents the best
estimator for Y that minimizes the mean square error.
The minimum value of the mean square error 1s given by

O min = E{|Y —E(Y | X)["} = E[E{|Y - E(Y | X)[" X }]
1)

= F{var(Y | X)} >0. (16-11)

As an example, suppose ¥ = X° 1is the unknown. Then the best
MMSE estimator 1s given by

Y=E{Y|X}=E{X"|X}=X", (16-12)
Clearly if Y = X, then indeed Y = X is the best estimator for ¥
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in terms of X. Thus the best estimator can be nonlinear.
Next, we will consider a less trivial example.

Example : Let kxy, O0<x<y<l

for(x,3) = {

0 otherwise,

where k& > 0 1s a suitable normalization constant. To determine the best
estimate for Y in terms of X, weneed f, (y]x).

£ =] fo, (. 0)dy = kaydy

21 2
:kxy :kx(1 x), 0<x<lI. > X
2 | 2
Thus
fYX(Y|X)=fX’Y(x’y)= kxyz = 2)/2; O<x<y<l.
f.(x)  kx(1-x7)/2 1-x
(16-13)
Hence the best MMSE estimator is given by ;
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Y=@<X>=E{Y|)_f} = [y £, (v x)dy

2y

a’y—

_g y3 l_gl—x 20y
31—x2x 31-x* 3 1-x
Once again the best estimator 1s nonlinear. In general the best

estimator E£{Y | X} is difficult to evaluate, and hence next we
will examine the special subclass of best linear estimators.

(16-14)

Best Linear Estimator
In this case the estimator y 1s a linear function of the

observations X, X,,---, X, . Thus
Y=aX +a,X,++a X, => alX, (16-15)

where 4,,4,,''',4d, are unknown quantities to be determined. The

mean square error 1s given by (e =Y -Y)) 7
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E{le [}=E{Y-Y, [} =E{|Y =D aX,["} (16-16)

and under the MMSE criterion 4,,4,,"--,a, should be chosen so
that the mean square error E{|¢ [*} is at its minimum possible
value. Let ¢ 2 represent that minimum possible value. Then

n

.= min E{|Y-) aX,|'}. (16-17)
n i=1

n
al ’az REEN

To minimize (16-16), we can equate

0 2y B
a—E{|8| }—0, k—1,2,---,n. (16-18)

a

This gives

0 2 (9|8|2 o<
—E{le| }=E =2FE|eq— |=0.
o, e { oa, } {&zk} (16-19)

8
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Oe a(Y_iZ:;,aiXi) _ oY _a(gaiXi)

o= =—-X,. 16-2
oa, oa, oa, oa, ¢ (16-20)
Substituting (16-19) in to (16-18), we get
2
ENlelS _ Hpe xty=o,
oa,
or the best linear estimator must satisfy
E{e X}=0, k=12,---,n. (16-21)

Notice that in (16-21), ¢ represents the estimation error
(Y-> aX,), and x ., k=1-—>n represents the data. Thus from
(16-21), the error € is orthogonal to the data X,, k=1-—n for the
best linear estimator. This 1s the orthogonality principle.

In other words, 1n the linear estimator (16-15), the unknown
constants 4,,4,,*,d, must be selected such that the error
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c=Y— Z a, X, 1s orthogonal to every data X, X,,---, X, for the
best linear estimator that minimizes the mean square erTor.

Interestingly a general form of the orthogonality principle
holds good 1n the case of nonlinear estimators also.

Nonlinear Orthogonality Rule: Let /(X)) represent any functional
form of the data and E{Y | X'} the best estimator for Y given X. With
e=Y—-E{Y| X} we shall show that

E{eh(X)} =0, (16-22)
implying that
e=Y-FE{Y|X} 1 hX).
This follows since
Elen(X)} = E{(Y - E[Y [ X])h(X)]

= E{Yh(X)} - E{E[Y | X]h(X)}

= E{Yh(X)} - EAE[YH(X)| X]}

= E{Yh(X)} - E{Yh(X)}=0. 10
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Thus 1n the nonlinear version of the orthogonality rule the error 1s
orthogonal to any functional form of the data.

The orthogonality principle in (16-20) can be used to obtain
the unknowns a,,a,,---,a_ 1n the linear case.

For example suppose n = 2, and we need to estimate Y in
terms of X, and X, linearly. Thus

Y, =a, X, ta,X,
From (16-20), the orthogonality rule gives
Ee X}=E{(Y-aX, -a,X,)X }=0
E{fe X} =E{(Y-a,X,—a,X,)X,}=0
Thus
E{| X, "Ya, + E{X, X, }a, = E{YX,}
E{X X,}a, +E{| X,|"}a, = E{YX,}

or
11
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[E{ X, [ E{)@X{“}j U [E{YX?})
. ) = . (16-23)
E{Xle} E{|X2| } az E{YXz}

(16-23) can be solved to obtain «, and a, in terms of the cross-

correlations.

The minimum value of the mean square error © Zin (16-17) 1s given by
G’ = mln E{|8 >

n
a,dp .,

= min Elee = min E{S(Y ZaX)}

dy,dy s dy dy,dy i=1

= min E{aY }— min ZaE{sX |3 (16-24)
dy,dy, e dy dp,dys sy
But using (16-21), the second term 1n (16-24) 1s zero, since the error is
orthogonal to the data X, where a,,a,,---,a, are chosen to be
optimum. Thus the minimum value of the mean square error 1s given

by 12
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6 =E{eY }= E{(Y—Zn:ain.)Y*}

i=1

= E{Y P} - Y aE(XY) (16-25)

i=l
where a,,a,,---,a, are the optimum values from (16-21).

Since the linear estimate 1n (16-15) 1s only a special case of
the general estimator ®(X) in (16-1), the best linear estimator that
satisfies (16-20) cannot be superior to the best nonlinear estimator

E{Y | X}. Often the best linear estimator will be inferior to the best
estimator in (16-3).

This raises the following question. Are there situations in
which the best estimator 1n (16-3) also turns out to be linear ? In
those situations it 1s enough to use (16-21) and obtain the best
linear estimators, since they also represent the best global estimators.
Such is the case if Yand X, X,,---, X are distributed as jointly Gaussiar

We summarize this in the next theorem and prove that result.

Theorem2: If X X ,.--,X andY arejointly Gaussian zero |,
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mean random variables, then the best estimate for Y in terms of
X,,X,,--,X 1s always linear.
Proof : Let

Y=0(X,,X,,, X )=E{Y| X} (16-26)

represent the best (possibly nonlinear) estimate of Y, and

Y =Yax (16-27)
i=1

the best linear estimate of Y. Then from (16-21)
e 2 Y—Yl :Y_ZaiXi (16-28)
i=1

1s orthogonal to the data XY . k=1>n. Thus

E{S X:}ZO, k=1—n. (16-29)
Also from (16-28),
E{e}=E{Y}-> a,E{X,}=0. (16-30) "
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Using (16-29)-(16-30), we get
E{e X} =E{£E{X,}=0, k=1->n. (16-31)

From (16-31), we obtain that € and X, are zero mean uncorrelated
random variables for £k =1 — n. But ¢ itself represents a Gaussian
random variable, since from (16-28) 1t represents a linear combination
of a set of jointly Gaussian random variables. Thus ¢ and X are
jointly Gaussian and uncorrelated random variables. As a result, € and
X are independent random variables. Thus from their independence

Efe | X} =E{e}. (16-32)
But from (16-30), E{e} =0, and hence from (16-32)
Ele | X} =0. (16-33)

Substituting (16-28) into (16-33), we get

Efe| X}=E{Y-Ya.X,| X}=0

i=1

15
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or
E{Y| X} = E{ZaX|X} ZaX Y, (16-34)

From (16-26), E{Y | X } Q(x) represents the best possible estimator,
and from (16-28), >~ ., a; X, represents the best linear estimator.
Thus the best linear estimator 1s also the best possible overall estimator
in the Gaussian case.

Next we turn our attention to prediction problems using linear
estimators.

Linear Prediction

Suppose X,X,,--, X, are known and X . 1s unknown.
Thus Y =X ., and this represents a one-step prediction problem.
If the unknown 1s X ,, then it represents a k-step ahead prediction
problem. Returning back to the one-step predictor, let X

represent the best linear predictor. Then
16
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Xnﬂ = _ZaiXi9 (16'35)
i=1

where the error
n
8n — Xn+1 T Xn+1 — Xn+1 + ZaiXi
i=1

=a, X, ta,X,+--+a X +X, ,
n+l
=2 a.X,, a,, =1, (16-36)
i=1
is orthogonal to the data, 1.e.,
E{e, X;}=0, k=1-n (16-37)
Using (16-36) in (16-37), we get

n+l

Ele, X} =Y a.E{X,X}=0, k=1->n. (16-38)
i=l1

Suppose X, represents the sample of a wide sense stationary 17
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stochastic process X (z) so that
E{X,X}=R(i-k)=r_, =1 (16-39)
Thus (16-38) becomes

n+l
E{e, X }=Yar. =0, a,, =1, k=1->n (16-40)

i=1

Expanding (16-40) for £ =1,2,---,n, we get the following set of
linear equations.

ar,+a,r+ap,+-+ar,  +r,=0k=1

ar, +a,y,+ar,+--+ar ,+r,_ =0k=2

ar,  ‘tay, ,tay, ,++ar+rn=0k=n. (16-41)

Similarly using (16-25), the minimum mean square error 1s given by

18
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o =E{le'V=E{e, Y )=E{e X )
n+l n+l

= E{(Z aiXi )X:H} — Z airn*+l—l'
i=1 i=1

=a,r, +a,r,_ +a;r, ,++ar+r,. (16-42)

The n equations 1n (16-41) together with (16-42) can be represented as

(hy KB V(g (0
nohy Rt T a, 0
’”2* ’”1* o **" Nz || 93 | 0
R (16-43)
Iy Ty o N 4y 0
o, e R (1) \o,)
Let 19
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_ 7'1* S T
L, = ; ' (16-44)
\rn* 7':_1 o rl* 7"0 j

Notice that T 1s Hermitian Toeplitz and positive definite. Using
(16-44), the unknowns in (16-43) can be represented as

@)y (0

a, 0 ( Last

a, 40 ,| column

T T of (16-43)
a, 0 . T )

(1) G,

Let

20
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(Tn T12 T1,n+1 \

n

» ]':121 ]';122 .. ]-;12,n+1
I, = : : (16-46)

n+1,1 n+l,2 n+1,n+1

Then from (16-45),

1 4 Ll \

ay n n+

i Tnz, 1
=c,| ", | (16-47)

4 .1 1

T}’l+ ,hn+

Thus |

Glf = n+1,n+1 > O’

7" (16-48) 4
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and

(al \ ( Tnl,n+1 \
a2 1 Tnz,n+1
= Tn+1,n+1 . ' (16'49)
Kan ) anl’l-}-l,l’l-l-l )

Eq. (16-49) represents the best linear predictor coefficients, and they
can be evaluated from the last column of 7 1n (16-45). Using these,
The best one-step ahead predictor in (16-35) taken the form

Han = (T jZ(T’ (16-50)

and from (16-48), the minimum mean square error 1s given by the
(n+1, n+1)entry of T .
From (16-36), since the one-step linear prediction error

e =X ,+a X +a, X,  ++aX, (16-51) 22
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we can represent (16-51) formally as follows

X, > l+az'+a, z7++az" ¢

n+l

Thus, let

A(z)=l+az"'+a, z"++az", (16-52)

them from the above figure, we also have the representation

g, —> —> X ..
4,(2)

n

The filter
1 1

A(z) l+az'+a, z"++az"

H(z)= (16-53)

represents an AR(n) filter, and this shows that linear prediction leads

to an auto regressive (4AR) model. 23
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The polynomial A4 (z) in (16-52)-(16-53) can be simplified using
(16-43)-(16-44). To see this, we rewrite 4 (z) as

A()=az"+az""+ta, z7+az" +1

a, 0
a, 0
=[z",z7" V270 =2 2 T
a, 0
1 o,
(16-54)

To simplify (16-54), we can make use of the following matrix identity

{A BHI —AB}_ 4 0
c ollo 1 |7lc pocap| (163

24
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Taking determinants, we get

A B )
=|4|D-C4™'B|
C D

In particular if D =0, we get

CA™'B = L

4 €0

A B

Using (16-57) in (16-54), with

C:[Z_naz_(n_l)a'naz_lal]) A :T;l: B=

(16-56)

(16-57)

25
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we get

0
7"0 7"1 7”2 rn
0 :
e A O
ST VAR
62 rn—l rn—Z 7"0 7"1
" -n _—(n-1)  _-I
z",z71 0 = 2 1

Referring back to (16-43), using Cramer’s rule to solve for a,,(=1),
we get

7"0 rn—l
G,
v et T |T |
a — n—1 0 :G2 n—1 :1

n 26
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or
2

7,

"I

Thus the polynomial (16-58) reduces to

1

4,(2) ST
n—1

_ -1 -2 —-n
=l+az +a, z " +---taz".

r

z

% %

Vo

n-1 "n

—n Z—(n—l) L

.o ]/'O ’/'1

z 1

(16-59)

(16-60)

The polynomial 4,(z) in (16-53) can be alternatively represented as

in (16-60), and H(z)= y

1

z

n

~ AR(n) in fact represents a stable

27
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AR filter of order n, whose input error signal ¢ 1s white noise of
constant spectral height equalto |7 |/|T _, | and outputis X .
It can be shown that 4,(z) has all its zeros in |z [>1 provided
|7, > 0 thus establishing stability.

Linear prediction Error

From (16-59), the mean square error using n samples is given
by

|17, |
cl=""1150. -
TN (16-61)
Suppose one more sample from the past 1s available to evaluate

X, (ie, X,,X, ,---,X|,X, are available). Proceeding as above
the new coefficients and the mean square error ¢, can be determined.

From (16-59)-(16-61),

|
G+: I’l+1. 1_2
T (16-62) 28
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Using another matrix identity it is easy to show that
7, [

1T I=
| Tn—l |

(115, ). (16-63)

Since | 7, |> 0, we must have (I-|s,, ') >0 or |s,,, |< 1 for every n.

From (16-63), we have
|T;1+1 | — | T;a |
17,1 T,
H’_J Hr_l

2 2
G 41 G,

(1_ | Sn+1 |2)

or
6,1 =0, (=[5, <o,, (16-64)

n+1
since (1-|s, ., |*) <1. Thus the mean square error decreases as more
and more samples are used from the past in the linear predictor.
In general from (16-64), the mean square errors for the one-step

predictor form a monotonic nonincreasing sequence 29
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G226’ 2 G.> =0 (16-65)

n+l — 00

whose limiting value 62 > 0.

Clearly, 6> >0 corresponds to the irreducible error in linear
prediction using the entire past samples, and it is related to the power
spectrum of the underlying process x (57 through the relation

1 ¢+
Gi :eXp|:27'c'[“ lnSXX(CO)d(D:|ZO. (16-66)

where S _(o)>0 represents the power spectrum of X' (nT).
For any finite power process, we have

[ 75, (@do < o
and since (S, (®0)=>0), InS_(0)<S§ _ (®). Thus

[T S, (@)do < [ S, (0)do <. (16-67)
30
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Moreover, if the power spectrum 1is strictly positive at every
Frequency, 1.e.,

S,(®)>0, mn-n<o<m, (16-68)
then from (16-66)

jj: InS_(0)do > —oo. (16-69)

and hence
G2 :exp{1 fﬂ lnSXX(oo)do)} > €7 =0 (16-70)
2 7T

1.e., For processes that satisfy the strict positivity condition in
(16-68) almost everywhere in the interval (- ,nt), the final
minimum mean square error is strictly positive (see (16-70)).
1.e., Such processes are not completely predictable even using

their entire set of past samples, or they are inherently stochastic,

31
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since the next output contains information that is not contained in
the past samples. Such processes are known as regular stochastic
processes, and their power spectrum is strictly positive.

S i (©)

>
—T TT

Power Spectrum of a regular stochastic Process

Conversely, 1f a process has the following power spectrum,

S, )
\W /\ 3
(,01 (,02 T

such that § (w)=0 in ®, <® <w, then from (16-70), 5> =0.

32
PILLAI

A

—T



Such processes are completely predictable from their past data
samples. In particular

X(nT)=) a,cos(®,t+¢,) (16-71)

is completely predictable from its past samples, since S (®) consists
of line spectrum. s (o)

o e

X(nT) 1 (16-71) 1s a shape deterministic stochastic process.
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