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16. Mean Square Estimation

Given some information that is related to an unknown quantity of
interest, the problem is to obtain a good estimate for the unknown in
terms of the observed data.

Suppose                          represent a sequence of random 
variables about whom one set of observations are available, and Y
represents an unknown random variable. The problem is to obtain a 
good estimate for Y in terms of the observations                                
Let

represent such an estimate for Y.
Note that        can be a linear or a nonlinear function of the observation

Clearly

represents the error in the above estimate, and        the square of 
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the error. Since      is a random variable,               represents the mean
square error. One strategy to obtain a good estimator would be to
minimize the mean square error by varying over all possible forms 
of           and this procedure gives rise to the Minimization of the 
Mean Square Error (MMSE) criterion for estimation. Thus under 
MMSE criterion,the estimator          is chosen such that the mean 
square error                is at its minimum.

Next we show that the conditional mean of Y given X is the 
best estimator in the above sense.
Theorem1: Under MMSE criterion, the best estimator for the unknown
Y in terms of                          is given by the conditional mean of Y
gives X. Thus 

Proof : Let                    represent an estimate of Y in terms of 
Then the error               and the mean square

error is given by
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Since

we can rewrite (16-4) as 

where the inner expectation is with respect to Y, and the outer one is
with respect to 
Thus

To obtain the best estimator       we need to minimize        in (16-6)
with respect to      In (16-6), since                                                     
and the variable      appears only in the integrand term, minimization
of the mean square error         in (16-6) with respect to      is              
equivalent to minimization of                                 with respect to
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Since  X is fixed at some value,             is  no longer random, 
and hence minimization of                                 is equivalent to 

This gives                                                      

or

But                       

since when                        is a fixed number             Using (16-9)
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in (16-8) we get the desired estimator to be

Thus the conditional mean of Y given                         represents the best
estimator for Y that minimizes the mean square error.

The minimum value of the mean square error is given by

As an example, suppose               is the unknown.  Then the best
MMSE estimator is given by 

Clearly if                then indeed               is the best estimator for Y
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in terms of X. Thus the best estimator can be nonlinear.
Next, we will consider a less trivial example.

Example : Let

where k > 0 is a suitable normalization constant. To determine the best
estimate for Y in terms of X, we need                              

Thus 

Hence the best MMSE estimator is given by
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Once again the best estimator is nonlinear. In general the best 
estimator                 is difficult to evaluate, and hence next we 
will examine the special subclass of best linear estimators.

Best Linear Estimator
In this case the estimator       is a linear function of the 

observations                          Thus

where                       are unknown quantities to be determined. The 
mean square error is given by
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and under the MMSE criterion                       should be chosen so 
that the mean square error                is at its minimum possible 
value. Let        represent that minimum possible value. Then

To minimize (16-16), we can equate

This gives
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Substituting (16-19) in to (16-18), we get 

or the best linear estimator must satisfy

Notice that in (16-21),     represents the estimation error                   
and                            represents the data. Thus from 

(16-21), the error     is orthogonal to the data                    for the 
best linear estimator. This is the orthogonality principle.

In other words, in the linear estimator (16-15), the unknown
constants                        must be selected such that the error   
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is orthogonal to every data         for the
best linear estimator that minimizes the mean square error.

Interestingly a general form of the orthogonality principle 
holds good in the case of nonlinear estimators also.
Nonlinear Orthogonality Rule: Let           represent any functional 
form of the data and                 the best estimator for Y given       With

we shall show that 

implying that

This follows since
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Thus in the nonlinear version of the orthogonality rule the error is 
orthogonal to any functional form of the data.

The orthogonality principle in (16-20) can be used to obtain
the unknowns                       in the linear case.          

For example suppose n = 2, and we need to estimate Y in 
terms of                    linearly. Thus

From (16-20), the orthogonality rule gives

Thus

or 
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(16-23) can be solved to obtain                  in terms of the cross-
correlations.
The minimum value of the mean square error       in (16-17) is given by

But using (16-21), the second term in (16-24) is zero, since the error is
orthogonal to the data        where                      are chosen to be 
optimum. Thus the minimum value of the mean square error is given
by
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where                       are the optimum values from (16-21).
Since the linear estimate in (16-15) is only a special case of 

the general estimator             in (16-1), the best linear estimator that 
satisfies (16-20) cannot be superior to the best nonlinear estimator    

Often the best linear estimator will be inferior to the best 
estimator in (16-3).

This raises the following question. Are there situations in 
which the best estimator in (16-3) also turns out to be linear ?  In
those situations it is enough to use (16-21) and obtain the best 
linear estimators, since they also represent the best global estimators.
Such is the case if Y and                         are distributed as jointly Gaussian

We summarize this in the next theorem and prove that result.
Theorem2: If                           and Y are jointly Gaussian zero 

naaa ,,, 21

)(Xϕ

}.|{   XYE

}{}|{|

}){(} {

1

*2

1

**2

∑

∑

=

=

−=

−==

n

i
ii

n

i
iin

YXEaYE

YXaYEYE εσ

(16-25)

nXXX ,,, 21

nXXX ,,, 21
PILLAI



14

mean random variables, then the best estimate for Y in terms of   
is always linear.

Proof : Let

represent the best (possibly nonlinear) estimate of Y, and

the best linear estimate of Y. Then from (16-21)

is orthogonal to the data                             Thus

Also from (16-28),
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Using (16-29)-(16-30), we get

From (16-31), we obtain that      and       are zero mean uncorrelated 
random variables for                    But      itself represents a Gaussian 
random variable, since from (16-28) it represents a linear combination
of a set of jointly Gaussian random variables. Thus     and  X are 
jointly Gaussian and uncorrelated random variables. As a result, and
X are independent random variables. Thus from their independence

But from (16-30),                  and hence from (16-32)

Substituting (16-28) into (16-33), we get
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or 

From (16-26),                             represents the best possible estimator,
and from (16-28),                   represents the best linear estimator.
Thus the best linear estimator is also the best possible overall estimator
in the Gaussian case.

Next we turn our attention to prediction problems using linear
estimators.

Linear Prediction
Suppose                         are known and           is unknown.

Thus                   and this represents a one-step prediction problem.
If the unknown is            then it represents a k-step ahead prediction
problem. Returning back to the one-step predictor, let            
represent the best linear predictor. Then 
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where the error

is orthogonal to the data, i.e.,

Using (16-36) in (16-37), we get

Suppose        represents the sample of a wide sense stationary iX

(16-35)
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stochastic process           so that 

Thus (16-38) becomes

Expanding (16-40) for                        we get the following set of
linear equations.

Similarly using (16-25), the minimum mean square error is given by
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The n equations in (16-41) together with (16-42) can be represented as

Let 
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Notice that       is Hermitian Toeplitz and positive definite. Using 
(16-44), the unknowns in (16-43) can be represented as

Let 
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Then from (16-45),

Thus     
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and 

Eq. (16-49) represents the best linear predictor coefficients, and they 
can be evaluated from the last column of        in (16-45). Using these,
The best one-step ahead predictor in (16-35) taken the form

and from (16-48), the minimum mean square error is given by the
(n +1, n +1) entry of      

From (16-36), since the one-step linear prediction error
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we can represent (16-51) formally as follows

Thus, let

them from the above figure, we also have the representation

The filter

represents an AR(n) filter, and this shows that linear prediction leads
to an auto regressive (AR) model.
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The polynomial            in (16-52)-(16-53) can be simplified using 
(16-43)-(16-44). To see this, we rewrite            as

To simplify (16-54), we can make use of the following matrix identity
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Taking determinants, we get

In particular if              we get

Using (16-57) in (16-54), with 
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we get

Referring back to (16-43), using Cramer’s rule to solve for 
we get

.

1      

           
              

               

                

  
||

  

0   1,,,

                     
0                      

                   
0                      
0                      

 
||

)1(    )(

1)1(
10

*
2

*
1

110
*

1

210

2

1

2

−−−−

−−

−

−−

=
−

=

zzz

rrrr

rrrr

rrrr

T

zz

T

T
zA

nn
nn

n

n

n

n

n
n

n

n

n

n
σ

σ

(16-58)

),1(1 =+na

PILLAI

1
||
||

||    
    

       
    

 

1201

10
2

1 === −−

−

+
n

n
n

n

n

n

n

n T
T

T
rr

rr

a σ

σ



27

or 

Thus the polynomial (16-58) reduces to

The polynomial           in (16-53) can be alternatively represented as

in (16-60), and                                         in fact represents a stable
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AR filter of order n, whose input error signal      is white noise of 
constant spectral height equal to                      and output is    
It can be shown that             has all its zeros in           provided 

thus establishing stability.

Linear prediction Error
From (16-59), the mean square error using n samples is given

by

Suppose one more sample from the past is available to evaluate
( i.e.,                                  are available). Proceeding as above

the new coefficients and the mean square error         can be determined.
From (16-59)-(16-61),
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Using another matrix identity it is easy to show that

Since               we must have                          or    for every n.
From (16-63), we have

or 

since                           Thus the mean square error decreases as more
and more samples are used from the past in the linear predictor.
In general from (16-64), the mean square errors for the one-step 
predictor form a monotonic nonincreasing sequence
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whose limiting value                     
Clearly,                corresponds to the irreducible error in linear

prediction using the entire past samples, and it is related to the power
spectrum of the underlying process              through the relation

where                      represents the power spectrum of     
For any finite power process, we have

and since                                                       Thus

222
1

2  ∞+ →>≥≥ σσσσ knn (16-65)
.02 ≥∞σ

)(nTX

).(nTX( ) 0XXS ω ≥

 2
 

1exp  ln ( ) 0.
2 XXS d

π

π
σ ω ω

π
+

∞ −

 = ≥  ∫ (16-66)

 

 
 ( )    ,XXS d

π

π
ω ω

+

−
< ∞∫

PILLAI

02 ≥∞σ

  

  
 ln ( )    ( )  .XX XXS d S d

π π

π π
ω ω ω ω

+ +

− −
≤ < ∞∫ ∫

( ( ) 0),    ln ( ) ( ).XX XX XXS S Sω ω ω≥ ≤

(16-67)



31

Moreover, if the power spectrum is strictly positive at every
Frequency, i.e., 

then from (16-66)

and hence

i.e., For processes that satisfy the strict positivity condition in 
(16-68) almost everywhere in the interval                the final 
minimum mean square error is strictly positive (see (16-70)).
i.e., Such processes are not completely predictable even using 
their entire set of past samples, or they are inherently stochastic,
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since the next output contains information that is not contained in 
the past samples. Such processes are known as regular stochastic
processes, and their power spectrum is strictly positive.

)(ωXXS

ω
ππ−

Power Spectrum of a regular stochastic Process
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Conversely, if a process has the following power spectrum,

such that                      in                       then from (16-70),                ( ) 0XXS ω = 21 ωωω << .02 =∞σ
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Such processes are completely predictable from their past data 
samples. In particular

is completely predictable from its past samples, since          consists
of  line spectrum.

in (16-71) is a shape deterministic stochastic process.
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