Multiple parameter Estimation

Consider

\[c(a, \hat{a}) = c(\hat{a} - a) = c(a_e(R)) \]

For MS Criterion

\[c(a_e(R)) = \sum_{i=1}^{K} a_i^2(R) = a_e^T(R)a_e(R). \]

Jalew

\[R_{ms} = \iint c(a_{e(R)}) \frac{P(A|R)}{P_e(R)} dR dA \]

\[= \int_{-\infty}^{\infty} P_r(R) \left[\int_{-\infty}^{\infty} c(a_{e(R)}) P(A|R) dA \right] dR \]

\[= \int_{-\infty}^{\infty} P_r(R) \left[\int_{-\infty}^{\infty} \sum_{i=1}^{K} (\hat{a}_i - A_i)^2 P(A|R) dA \right] dR \]

minimizing \(R_{ms} \) = minimizing the inner integral \(I \)

for each \(R \). Since the terms in the sum are positive, we minimize them separately.
\[I = \int_{-\infty}^{\infty} (\hat{A}_i - A_i)^2 P_{\text{air}}(A|B) dA + \ldots + \int_{-\infty}^{\infty} (\hat{A}_k - A_k)^2 P_{\text{air}}(A|B) dA. \]

\[I_1 \]

\[\left\{ \begin{align*}
\frac{\partial I_1}{\partial \hat{A}_i} &= 0 \\
\frac{\partial I_k}{\partial \hat{A}_k} &= 0
\end{align*} \right. \]

\[\hat{A}_i = \int_{-\infty}^{\infty} A_i P_{\text{air}}(A|B) dA \]

\[\hat{A}_k = \int_{-\infty}^{\infty} A_k P_{\text{air}}(A|B) dA. \]

\[A_{\text{ms}} = \int_{-\infty}^{\infty} A P_{\text{air}}(A|B) dA \]

For MAP estimation, we should have:

\[\frac{\partial \ln P_{\text{air}}(A|B)}{\partial A_i} \bigg|_{A = \hat{A}_{\text{map}}} = 0, \quad i = 1, 2, \ldots, k \]
\[\nabla_A \left[\ln P_{AIR}(A|B) \right] \bigg|_{A = \hat{A}_{MAP}(B)} = 0. \]

where

\[\nabla_A = \left(\frac{\partial}{\partial A_1}, \ldots, \frac{\partial}{\partial A_k} \right)^T \]

Similarly, for ML estimates we must find \(A = \hat{A}_{ML}(B) \) that maximizes \(P_{R1A}(R|IA) \).

\[\nabla_A \left[\ln P_{R1A}(R|IA) \right] \bigg|_{A = \hat{A}_{ML}(B)} = 0. \]

In both cases we must verify that we have absolute maximum.
For ML estimation we must find the value of A that maximizes $p_{\text{ML}}(A|R)$. If the maximum is interior and $\frac{\partial \ln p_{\text{ML}}(A|R)}{\partial A_i}$ exists at the maximum then a necessary condition is obtained from the MAP equations. By analogy with (137) we take the logarithm of $p_{\text{ML}}(A|R)$, differentiate with respect to each parameter A_i, $i = 1, 2, \ldots, K$, and set the result equal to zero. This gives a set of K simultaneous equations:

$$\frac{\partial \ln p_{\text{ML}}(A|R)}{\partial A_i} = 0, \quad i = 1, 2, \ldots, K. \quad (238)$$

We can write (238) in a more compact manner by defining a partial derivative matrix operator

$$\nabla_A \triangleq \begin{bmatrix}
\frac{\partial}{\partial A_1} \\
\frac{\partial}{\partial A_2} \\
\vdots \\
\frac{\partial}{\partial A_K}
\end{bmatrix}. \quad (239)$$

This operator can be applied only to $1 \times m$ matrices; for example,

$$\nabla_A G = \begin{bmatrix}
\frac{\partial G_1}{\partial A_1} & \frac{\partial G_2}{\partial A_1} & \cdots & \frac{\partial G_m}{\partial A_1} \\
\frac{\partial G_1}{\partial A_2} & \frac{\partial G_2}{\partial A_2} & \cdots & \frac{\partial G_m}{\partial A_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial G_1}{\partial A_K} & \frac{\partial G_2}{\partial A_K} & \cdots & \frac{\partial G_m}{\partial A_K}
\end{bmatrix}. \quad (240)$$

Several useful properties of ∇_A are developed in Problems 2.4.27–28. In our case (238) becomes a single vector equation,

$$\nabla_A \ln p_{\text{ML}}(A|R) = 0. \quad (241)$$

Similarly, for ML estimates we must find the value of A that maximizes $p_{\text{ML}}(R|A)$. If the maximum is interior and $\frac{\partial \ln p_{\text{ML}}(R|A)}{\partial A_i}$ exists at the maximum then a necessary condition is obtained from the likelihood equations:

$$\nabla_A [\ln p_{\text{ML}}(R|A)]_{A = \hat{A}_{\text{MAP}}} = 0. \quad (242)$$

In both cases we must verify that we have the absolute maximum.

Measures of Error. For nonrandom variables the first measure of interest is the bias. Now the bias is a vector,

$$B(A) \triangleq E[\hat{A}(R)] - A. \quad (243)$$

If each component of the bias vector is zero for every A, we say that the estimate is unbiased.

In the single parameter case a rough measure of the spread of the error was given by the variance of the estimate. In the special case in which $a(R)$ was Gaussian this provided a complete description:

$$p_{a}(A) = \frac{1}{\sqrt{2\pi}a_x} \exp \left(-\frac{A^2}{2a_x^2}\right). \quad (244)$$

For a vector variable the quantity analogous to the variance is the covariance matrix

$$\mathbb{E}[(\hat{a} - \bar{a})(\hat{a}^T - \bar{a}^T)] \triangleq \Lambda_x, \quad (245)$$

where

$$\bar{a} \triangleq E(a) = B(A). \quad (246)$$

The best way to determine how the covariance matrix provides a measure of spread is to consider the special case in which the a_i are jointly Gaussian. For algebraic simplicity we let $E(a) = 0$. The joint probability density for a set of K jointly Gaussian variables is

$$p_{a}(A) = \left(\frac{\kappa K^m}{2\pi}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2}A^T \Lambda_x^{-1} A\right). \quad (247)$$

(e.g., p. 151 in Davenport and Root [1]).

The probability density for $K = 2$ is shown in Fig. 2.24a. In Figs. 2.24b, c we have shown the equal-probability contours of two typical densities. From (247) we observe that the equal-height contours are defined by the relation

$$A_i^T \Lambda_x^{-1} A_i = C^2, \quad (248)$$

which is the equation for an ellipse when $K = 2$. The ellipses move out monotonically with increasing C. They also have the interesting property that the probability of being inside the ellipse is only a function of C^2.

Property. For $K = 2$, the probability that the error vector lies inside an ellipse whose equation is

$$A_i^T \Lambda_x^{-1} A_i = C^2, \quad (249)$$

is

$$P = 1 - \exp \left(-\frac{C^2}{2}\right). \quad (250)$$

Proof. The area inside the ellipse defined by (249) is

$$A = \left| A_i \right|^{\frac{1}{2}} \frac{1}{2\pi C} \, dC. \quad (251)$$

The differential area between ellipses corresponding to C and $C + dC$ respectively is

$$dA = \left| A_i \right|^{\frac{1}{2}} 2\pi C \, dC. \quad (252)$$
For this reason the ellipses described by (248) are referred to as concentration ellipses because they provide a measure of the concentration of the density.

A similar result holds for arbitrary K. Now, (248) describes an ellipsoid. Here the differential volume† in K-dimensional space is

$$dv = |A_e|^{1/2} \frac{\pi^{K/2}}{\Gamma(K/2 + 1)} KC^{K-1} dC. \quad (255)$$

The value of the probability density on the ellipsoid is

$$[(C\pi)^{K/2} |A_e|^{1/2}]^{-1} \exp \left(-\frac{C^2}{2} \right). \quad (256)$$

Therefore

$$1 - P = \frac{K}{(2\pi)^{K/2} \Gamma(K/2 + 1)} \int_0^\infty X^{K-1} e^{-X^{2/2}} dX, \quad (257)$$

which is the desired result. We refer to these ellipsoids as concentration ellipsoids.

When the probability density of the error is not Gaussian, the concentration ellipsoid no longer specifies a unique probability. This is directly analogous to the one-dimensional case in which the variance of a non-Gaussian zero-mean random variable does not determine the probability density. We can still interpret the concentration ellipsoid as a rough measure of the spread of the errors. When the concentration ellipsoids of a given density lie wholly outside the concentration ellipsoids of a second density, we say that the second density is more concentrated than the first. With this motivation, we derive some properties and bounds pertaining to concentration ellipsoids.

Bounds on Estimation Errors; Nonrandom Variables. In this section we derive two bounds. The first relates to the variance of an individual error; the second relates to the concentration ellipsoid.

Property I. Consider any unbiased estimate of A_i. Then

$$\sigma_i^2 = \operatorname{Var} [\hat{a}(R) - A_i] \leq J_i^T, \quad (258)$$

where J_i is the ith element in the $K \times K$ square matrix J. The elements in J are

$$J_{ij} = E \left[\frac{\partial}{\partial A_i} \ln p_{\text{est}}(R|A) \frac{\partial}{\partial A_j} \ln p_{\text{est}}(R|A) \right]$$

$$= -E \left[\frac{\partial^2 \ln p_{\text{est}}(R|A)}{\partial A_i \partial A_j} \right]. \quad (259)$$

† e.g., Cramér [9], p. 120, or Sommerfeld [32].
1. Let $\hat{A}_i(B)$ represent any unbiased estimate of A_i. Then

$$e_i^2 = \text{Var} [\hat{A}_i(B) - A_i] \geq J^{ii},$$

where J^{ii} is the iith element in the $K \times K$ square matrix J^{-1}. The elements in J are

$$J_{ij} = \mathbb{E} \left[\frac{\text{coln} P_{xi} (B|A)}{\text{coln} P_{xi} (B|A)} \right]$$

$$= -\mathbb{E} \left[\frac{\text{coln} P_{xi} (B|A)}{\text{coln} P_{xi} (B|A)} \right].$$

The J matrix is commonly called Fisher's information matrix. The equality in (4) holds iff

$$\hat{A}_i(B) - A_i = \sum_{j=1}^{K} K_{ij}(A) \frac{\text{coln} P_{xi} (B|A)}{\text{coln} P_{xi} (B|A)}.$$
Proof: Because $\hat{A}_i(R)$ is unbiased, $(\hat{A}_i(R) = A_i)$

$$\int_{-\infty}^{\infty} [\hat{A}_i(R) - A_i] P_{1a}(R|IA) \, dR = 0, \quad j = 1, k$$

or

$$\int_{-\infty}^{\infty} \hat{A}_i(R) P_{1a}(R|IA) \, dR = \sum_{c_{IA}} A_i \quad i = 1, k$$

$$\implies \int_{-\infty}^{\infty} \hat{A}_i(R) \left(\frac{P_{1a}(R|IA)}{P_{1a}(R|IA)} \right) \, dR = \Sigma_{i,j}$$

Let $i = 1$. Define a $k+1$ vector

$$X = \begin{bmatrix}
\hat{A}_1(R) - A_1 \\
\frac{\ln P_{1a}(R|IA)}{c_{IA}} \\
\vdots \\
\frac{\ln P_{1a}(R|IA)}{c_{IA}} \\
\end{bmatrix}
\begin{cases}
K+1 \text{ elements}
\end{cases}$$
The covariance matrix is

\[E \{XX^T \} = E \left\{ \begin{bmatrix} \hat{\alpha}_1(B) - A_1 \\ \frac{\ln P_{11}(BIA)}{\sigma A_1} \\ \vdots \\ \frac{\ln P_{1k}(BIA)}{\sigma A_k} \end{bmatrix} \begin{bmatrix} \hat{\alpha}_1(B) - A_1 \\ \frac{\ln P_{11}(BIA)}{\sigma A_1} \\ \vdots \\ \frac{\ln P_{1k}(BIA)}{\sigma A_k} \end{bmatrix} \right\} \]

\[= \begin{bmatrix} E \{(\hat{\alpha}_1(B) - A_1)^2 \} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \]

\[= \begin{bmatrix} 1 & J_{11} & \cdots & J_{1k} \\ J_{11} & 1 & \cdots & J_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ J_{k1} & J_{k2} & \cdots & 1 \end{bmatrix} \]

Aside:

Note 1: \[E \{ (\hat{\alpha}_1(B) - A_1) \frac{\ln P_{11}(BIA)}{\sigma A_1} \} \]

\[= E \{ \hat{\alpha}_1(B) \frac{\ln P_{11}(BIA)}{\sigma A_1} \} - E \{ A_1 \frac{\ln P_{11}(BIA)}{\sigma A_1} \} \]

But \[E \{ A_1 \frac{\ln P_{11}(BIA)}{\sigma A_1} \} = A_1 \int \frac{\ln P_{11}(BIA)}{\sigma A_1} P(BIA) dBIA \]

\[= A_1 \frac{\int P_{11}(BIA) dBIA}{\sigma A_1} = 0 \]
Note 2:

\[E \left\{ (\mathbf{a}_i^T - \mathbf{A}_i) \frac{\partial \ln P_{110}(\mathbf{RIA})}{\partial \mathbf{A}_2} \right\} = E \left\{ \mathbf{a}_i^T \frac{\partial \ln P_{110}(\mathbf{RIA})}{\partial \mathbf{A}_2} \right\} \]

\[-\mathbf{A}_i \frac{\partial \ln P_{110}(\mathbf{RIA})}{\partial \mathbf{A}_2} \]

\[\Rightarrow 0. \]

Proof contd:

Since it is a covariance matrix, it is nonnegative definite, which implies that

\[\det \{ E(XX^T) \} \geq 0. \]

Note that

\[\det \left\{ E^{1/2}(XX^T) \right\} = 0^{2} \frac{1}{|J|} - \text{cofactor } J_{11} \geq 0. \]

\[0^2 \geq \frac{\text{cofactor } J_{11}}{|J|} = J'' \]

The generalization to \(i \neq 1 \) is simple.

QED
Note 3:

\[\text{det} \{ E \{ x \times T \} \} = \varepsilon_1^2 \text{ Cofactor } \varepsilon_1^2 - 1 \text{ Cofactor } 1 \]

\[\text{Cofactor } 1 = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \\ J_{K1} & \cdots & J_{K2} & J_{KK} \end{pmatrix} \]

\[= 1 \text{ Cofactor } 1 + 0 + 0 \cdots = \text{ Cofactor } J_{11} \]

\[\begin{pmatrix} J_{11} & \cdots & J_{1K} \\ \vdots & \ddots & \vdots \\ J_{K1} & \cdots & J_{KK} \end{pmatrix} \]

\[\text{Cofactor } J_{11} \]

\[\therefore \text{det} \{ E \{ x \times T \} \} = \varepsilon_1^2 |J| - \text{Cofactor } J_{11}. \]